

Honeywell H7625A Humidity Temperature Sensors Instruction **Manual**

Home » Honeywell » Honeywell H7625A Humidity Temperature Sensors Instruction Manual

Contents

- 1 Honeywell H7625A Humidity Temperature **Sensors**
- 2 Product Information1Specifications
- 3 Product Usage Instructions:
- **4 Installation Instructions**
- **5 APPLICATION**
- **6 INSTALLATION**
- **7 INSTALLATION INSTRUCTIONS**
- **8 CALIBRATION**
- 9 Documents / Resources
 - 9.1 References
- **10 Related Posts**

Honeywell H7625A Humidity Temperature Sensors

Product Information1Specifications

• Power Supply: +18 to 40 Vdc or 24 Vac

• Output Signal: 4 to 20 mA, 0 to 5 Vdc, or 0 to 10 Vdc (field selectable)

• Humidity Range: 0 to 100% RH

• Temperature Sensor: 20K ohm NTC thermistor or 1K platinum PTC

Product Usage Instructions:

Installation

- 1. Read the instructions carefully.
- 2. Check the ratings to ensure suitability for your application.
- 3. Installation must be done by a trained service technician.
- 4. After installation, check the product operation.

Caution

Honeywell H7625A Humidity Temperature Sensors

Disconnect the power supply before installation to avoid electrical shock or equipment damage.

Installation Instructions

Caution

Improper wiring can damage the sensor. Follow the wiring instructions carefully.

Location

Install the sensor in a location where it cannot be affected by:

- Drafts, dead spots, or hot/cold air from ducts
- Radiant heat from sun or appliances
- · Concealed pipes and chimneys
- Unheated (uncooled) areas such as an outside wall behind the device

Mounting

- 1. Mount the housing base over a standard 2 in. x 4 in. single gang junction box or flush to the wall
- 2. Install the sensor about 5 ft (1.5m) above the floor in an area with good air circulation at average humidity and temperature.
- 3. Ensure the device receives adequate airflow.
- 4. Wire the device according to the wiring diagram.
- 5. Ensure proper DIP switch settings.
- 6. Apply power to the unit.
- 7. Snap the cover into position.
- 8. Turn out the 1/16 in. allen screws at the bottom of the enclosure until the cover cannot be removed.

Output Settings

The humidity output signal can be adjusted for 0-5Vdc, 0-10 Vdc, or 4-20 mA using the switch block. Refer to Fig. 2 for switch settings.

FAQ

- Q: What is the power supply range for these sensors?
 - A: The sensors can be powered with either +18 to 40 Vdc or 24Vac supply.
- Q: Can I adjust the humidity output signal?
 - A: Yes, you can adjust the humidity output signal to 0-5Vdc, 0-10 Vdc, or 4-20 mA using the switch block.
- Q: What is the default temperature sensor used?
 - A: The default temperature sensor used is a 1K platinum PTC compatible with the T775.

APPLICATION

The H7625A, H7626A, H7635A and H7636A Wall-Mount Humidity/Temperature Sensors are universal Relative Humidity transmitters that can be powered with either a +18 to 40 Vdc or 24 Vac supply. The devices are half wave rectified. The transmitter also includes either a 20K ohm NTC thermistor or a 1K platinum PTC (compatible with the T775) for optional temperature use.

The humidity sensors are designed with a field selectable 4 to 20 mA, 0 to 5 Vdc, or 0 to 10 Vdc output signal equivalent to 0 to 100% RH. All units are shipped from the factory with a default setting to accept AC power with three-wire, 0 to 10 Vdc output.

INSTALLATION

When Installing this Product...

1. Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.

- 2. Check ratings given in instructions and on the product to ensure the product is suitable for your application.
- 3. Installer must be a trained, experienced service technician.
- 4. After installation is complete, check out product operation as provided in these instructions.

CAUTION

Electrical Shock or Equipment Damage Hazard. Can shock individuals or short equipment circuitry. Disconnect power supply before installation.

INSTALLATION INSTRUCTIONS

CAUTION

Equipment Damage Hazard. Improper wiring can damage the sensor beyond repair. Follow the wiring instructions carefully.

Location

Install the device where it cannot be affected by:

- drafts, or dead spots behind doors and in corners.
- hot or cold air from ducts.
- radiant heat from sun or appliances.
- · concealed pipes and chimneys.
- unheated (uncooled) areas such as an outside wall behind the device.

Mounting

The housing base mounts over standard 2 in. x 4 in. single gang junction box or flush to the wall:

- 1. Install the sensor about 5 ft (1.5m) above the floor in an area with good air circulation at average humidity and temperature. (See Fig. 1.)
- 2. Ensure the device receives adequate airflow.
- 3. Wire the device. (See Fig. 5 through 4.)
- 4. Ensure proper DIP switch settings.
- 5. Apply power to the unit.
- 6. Snap the cover into position.
- 7. Turn out the 1/16 in. allen screws at the bottom of the enclosure until the cover cannot be removed.

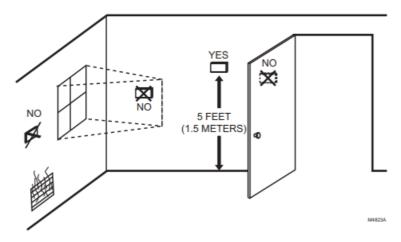


Fig. 1. Typical sensor location.

Output Settings

The humidity output signal can be adjusted for 0-5Vdc, 0-10 Vdc or 4-20 mA using the switch block. Switches 6, 7, and 8 are used to set the output.

NOTE: Refer to Fig. 2 for switch settings.

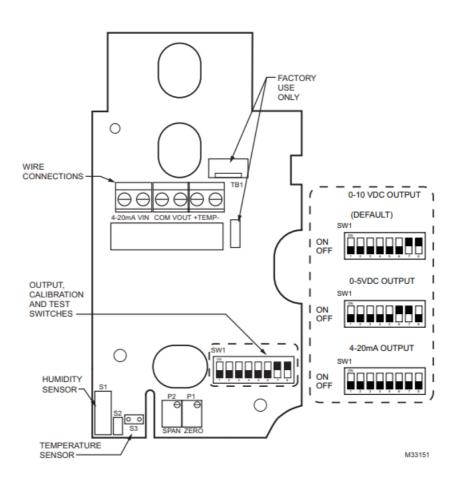


Fig. 2. DIP switch and Wire Connection locations.

Table 1. Controller Compatibility and Output Settings.

Table 1. Controller Compatibility and Output Settings.

Controller	Required Sensor Output Setting	LonSpec™ Setting
W7750, W7760, W7761	4-20 mA	C7600C
W7750B,C W7760C, W7753, W7760	0-10 Vdc (default)	H7621/31
T7350, XL50, XL100, XL500 XF Modules, XFL	0-10 Vdc (default)	n/a
Non-Honeywell	0-5 Vdc	n/a

REVERSE ACTING OUTPUT

The output can be changed to reverse acting mode. The output range stays the same but the corresponding RH value is opposite. Direct Acting is the default mode.

Example: Direct Acting (DA)

- 0-10V output mode
- 0V = 0% RH and 10V = 100% RH

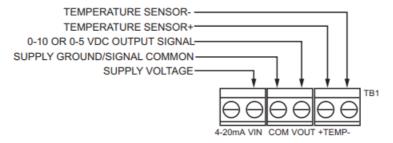
Reverse Acting (RA)

- 0-10V output mode,
- 0V = 100% and 10V = 0%

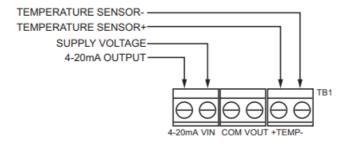
To change the transmitter to reverse acting or back to direct acting, set switch 4 ON to put the unit in setup mode. After switch 4 is on, switch 2 will put the unit in direct/reverse-acting mode. When switch 2 is set to ON, the output can be used to show if the unit is in direct or reverse acting mode. For direct acting the output will be 1V for 0-5V, 2V for 0-10V, and 7.2mA for 4-20mA. For reverse acting the output will be 4V for 0-5V, 8V for 0-10V, and 16.8mA for 4-20mA.

With switches 2 and 4 ON, each time switch 5 is set to ON the output will change to reverse acting or direct acting.

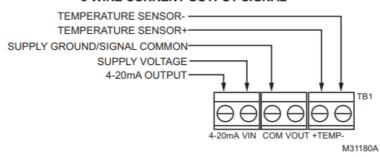
To reset the unit to the default setting, toggle both switches 5 and 6 ON then OFF while both switches 2 and 4 are ON.


When all calibration is completed, remember to place the switches back into the positions that correspond to the output needed as shown in Figure 3.

WIRING


A 16 to 22 AWG shielded cable is recommended for all transmitters. Twisted pair may be used for 2-wire current output transmitters.

Refer to Figure 3 for wiring diagrams.


VOLTAGE OUTPUT SIGNAL

2 WIRE CURRENT OUTPUT SIGNAL

3 WIRE CURRENT OUTPUT SIGNAL

CAUTION

It is recommended that you use an isolated UL-listed class 2 transformer when powering the unit with 24 VAC. Failure to wire the devices with the correct polarity when sharing transformers may result in damage to any device powered by the shared transformer.

IMPORTANT

When using shielded cable, ground the shield only at the controller end (see Fig. 4). Grounding both ends can cause a ground loop.

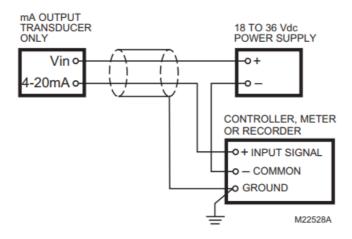


Fig. 4. Typical wiring diagram for transducer with two-wire mA output with external DC power supply.

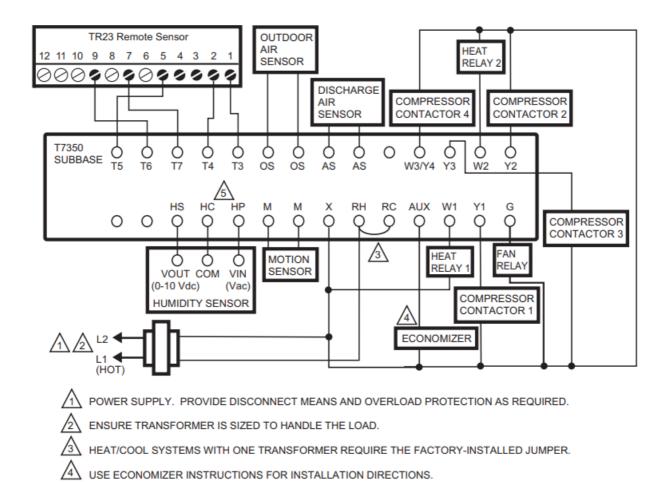
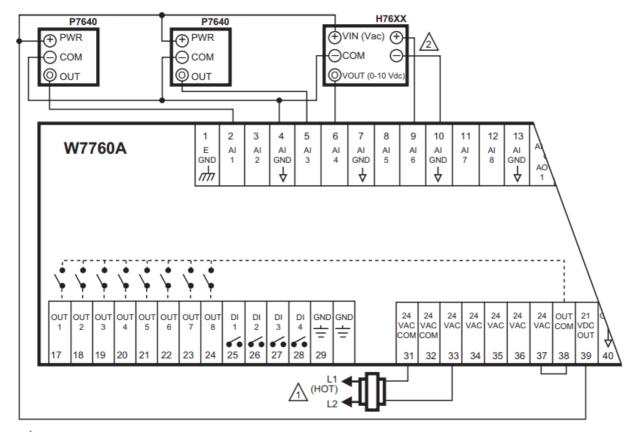



Fig. 5. Humidity Sensor (0-10 Vdc output) wiring with T7350 (use with RH/Temperature combination T7350 units only).

M31307

HC AND HP PROVIDE 24 VAC TO THE HUMIDITY SENSOR.

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED.

TEMPERATURE SIGNAL CONNECTIONS ARE NOT POLARITY SENSITIVE.

M18302C

Fig. 6. Typical wiring diagram for 5-wire temperature/humidity sensor with Vdc output (used with the XL15A controller).

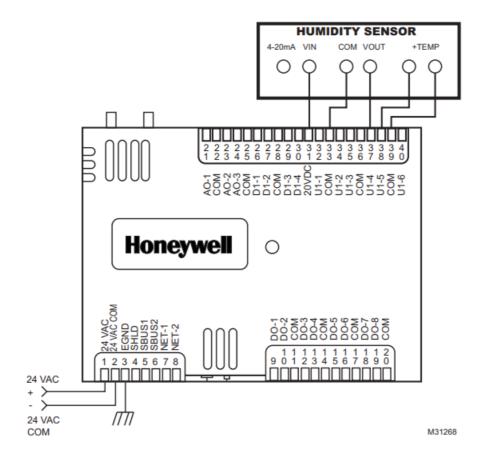


Fig. 7. Typical wiring diagram for 5-wire temperature/humidity sensor with Vdc output (used with the Spyder controller).

CHECKOUT

CAUTION

Equipment Damage Hazard. Can short electric circuitry.

- Never connect 120 Vac to the transducer.
- Connect only DC voltage to a transducer intended for DC supply.

NOTE: Use laboratory quality meters and gauges for appli-cations requiring a high degree of accuracy.

- 1. Verify that the transducer is mounted in the correct position.
- 2. Verify appropriate input signal and voltage supply.
- 3. Verify appropriate configuration range.

Converting Output Signal to Percent RH

4 to 20mA Signal

- ((mA signal) -4) / 0.16 = percent RH
- Example: 12mA output signal
- (12-4) / 0.16 = 50% RH

0 to 5 Vdc Signal

• (VDC signal) / 0.05 = percent RH

• Example: 1.25vdc output signal

• 1.25 / 0.05 = 25% RH

0 to 10 Vdc Signal

• (VDC signal) / 0.10 = percent RH

• Example: 7.50vdc output signal

• 7.50 / 0.10 = 75% RH

Table 2. Troubleshooting.

Table 2. Troubleshooting.

Problem	Items to Check	
No reading	 Verify correct supply voltage at the power terminal blocks. Verify correct wiring configuration and DIP switch settings per Figures 2 and 3. Verify that terminal screws are connected tightly with all wires firmly in place. 	
Erratic readings	 Verify all wires are terminated properly. Ensure that there is no condensation on the board. Verify clean input power. In areas of high RF interference or noise, shielded cable can be necessary to stabilize signal. 	
Inaccurate readings	If you suspect that the transmitter is not reading within the specified tolerance, please contact the factory for further assistance	

APPENDIX

RH Test and Configuration DIP Switch Settings (Table 3)

IMPORTANT

- Only adjust these switches for troubleshooting or recalibrating the sensor.
 (Adjustment is not normally necessary.)
- Test mode will make the transmitter output a fixed 0%, 50%, or 100% value. The sensor will not affect the transmitter output. This is used for troubleshooting or testing only.
- Switches 1, 2, and 3 are used for test mode. The output will be a fixed 0%, 50%, or 100% signal that corresponds to the output selected with switches 6, 7, and 8. Refer to Figure 4 for switch settings.

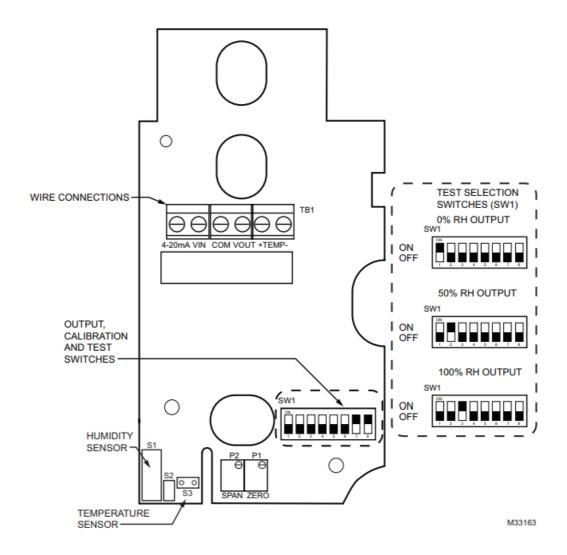


Table 3. Test and Calibration Settings (8-Switch Block).

CALIBRATION

NOTE: This is only a single-point calibration. All transmitters are factory-calibrated to meet/exceed published specifications. Field adjustment should not be necessary.

The dipswitch allows the user to calibrate the sensor through the software. Setting switch 4 ON will put the transmitter into setup mode allowing the increment and decrement to work. Once in setup mode, the output will change to 50% (2.5V for 0-5V, 5V for 0-10V, 12mA for 4-20mA). Each increment or decrement step will cause the output to change by 0.1V for 0-5V, 0.2V for 0-10V, and 0.32mA for 4-20mA in setup mode. This can be used to show the user how far offset the transmitter is. To see the starting point again set switch 1 ON. This will show the 50% output again. When the unit is out of setup mode the output will go back to RH output.

Increment RH Output

This will shift the RH output linearly up in 0.5% steps. Switch 4 must be set to ON first. After switch 4 is on, each time switch 5 is set ON the RH output will increase by 0.5%. The increase goes into effect each time switch 5 is set to ON.

Decrement RH Output

This will shift the RH output linearly down in 0.5% steps. Switch 4 must be set to ON first. After switch 4 is on, each time switch 6 is set ON the RH output will decrease by 0.5%. The decrease goes into effect each time switch 6 is set to ON.

Reset RH Output

This will reset the RH output back to the original calibration. Switch 4 must be set to ON first. After switch 4 is on, toggle switches 5 and 6 ON then OFF. After 5 and 6 are OFF slide switch 4 OFF.

When all calibration is completed, remember to place the switches back into the positions that correspond to the output needed as shown in Figure 3.

Automation and Control Solutions

Honeywell International Inc. 1985 Douglas Drive North Golden Valley, MN 55422

customer.honeywell.com

® U.S. Registered Trademark© 2011 Honeywell International Inc. 62-0327—03 S.B. Rev. 11-11

Printed in the United States

Documents / Resources

<u>Honeywell H7625A Humidity Temperature Sensors</u> [pdf] Instruction Manual H7625A Humidity Temperature Sensors, H7625A, Humidity Temperature Sensors, Temperature Sensors, Sensors

References

- H Building Automation
- ® Manual-Hub.com Free PDF manuals!
- User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.