
Home » HOLTEK » HOLTEK HT32 MCU GNU Arm Compiler User Guide

HOLTEK HT32 MCU GNU Arm Compiler

HOLTEK HT32 MCU GNU Arm Compiler User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/holtek

Contents [hide

1 Introduction
2 Resource Download and Preparation

2.1 Firmware Library
2.2 Terminal Program

3 GNU Arm Compiler Installation
3.1 GNU Arm Installation
3.2 Test

4 Used with GNU Make
4.1 GNU Make Installation
4.2 Compile and Output
4.3 Programming using the e-Link32
Pro/Lite

5 Setting Description
6 Used with the Keil MDK-ARM uVision

6.1 Project Settings
6.2 Compile and Test

7 Common Problems
7.1 Firmware Library Version Requirements

8 Conclusion
9 Reference Material
10 Revision and Modification Information
11 Disclaimer

11.1 Limitation of Liability
11.2 Governing Law
11.3 Update of Disclaimer

12 Documents / Resources
12.1 References

13 Related Posts

Introduction

There are many kinds of compiler available, some commonly used ones are the Keil (MDK-ARM), the IAR
(EWARM), the GNU (GNU ARM) and so on. If the “GNU” is compared with the “Keil” and “IAR”, the main
difference is that the GNU is free to use and the Keil and IAR both have paid for licenses, otherwise there will be
program size limit. As can be seen from the following figure, compared with the Keil MDK-ARM, the GNU Arm has
the advantage of no size limit and is more convenient to use. This application note will describe how to use the
GNU Arm Compiler with HT32 MCUs.
This application note first describes the resource download and preparation. The download file includes a
Firmware Library which contains an example program required during the testing process. The example program
can transmit messages via the COM port, therefore the terminal software will be used for function selection or
status display. The installation and usage of the GNU Arm Compiler will be introduced in sequence and can be
used with “GNU Make” or “Keil MDKARM uVision”. Finally, assistance is provided to resolve common problems
during installation, allowing users to find a solution when they encounter problems. It also helps users to quickly
build an environment for the GNU Arm Compiler to use.

Resource Download and Preparation

This chapter describes the example program and required software tools and explains how to configure the
directory and file path.

Firmware Library

Before using the example program, download the latest Holtek HT32 Firmware Library from the following link and
then decompress the downloaded file. Ensure that the correct HT32 firmware library has been selected. For
example the HT32_M0p_Vyyyymmdd.zip is for the HT32F5xxxx series of MCUs and the
HT32_M3_Vyyyymmdd.zip is provided for the HT32F1xxxx series of MCUs.
This compressed file contains several folders which can be categorised as Document, Firmware Library, Tools,
etc, which are located in the directory as shown in the following Figure. In the Firmware Library folder is placed the
HT32 Firmware Library compressed file named HT32_STD_xxxxx_FWLib_Vm.n.r_s.zip, as shown below.

Download link: https://mcu.holtek.com.tw/ht32/resource/

Terminal Program

The Application Code example program can transmit messages via the COM port for function selection or status
display. Users can install appropriate communication software on the host PC, such as Tera Term, which is a

https://mcu.holtek.com.tw/ht32/resource/

license free program.

The UART interface configuration in the example program has an 8-bit data format. There is no parity bit. It has
one stop bit and a baud rate of 115200.

GNU Arm Compiler Installation

This chapter describes the installation of the GNU Arm Compiler which is explained in the “GNU Arm Installation”
and “Test” sections.

GNU Arm Installation

Step 1. Download an EXE file for the GNU Arm installation from the following link.

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Note: According to the Arm GNU Toolchain 2022 update information, the previous version is classified as a
discontinued file. The file names used in this article and the latest discontinued version are as follows:

The file name used in this article is: “gcc-arm-11.2-2022.02-mingw-w64-i686-arm-none- eabi.exe”.
The file name for the latest discontinued version is: “gcc-arm-none-eabi-10.3-2021.10- win32.exe”.

Step 2. In the “Choose Install Location” step, as shown in the following figure, save the installation path during
installation. This path will be configured in Keil in the “Used with Keil MDK- ARM uVision” chapter.
For example:
“C:\Program Files (x86)\Arm GNU Toolchain arm-none-eabi\11.2 2022.02”.

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Step 3. During the last installation step, select “Add path to environment variable” and click “Finish”.

Note: Reboot the computer when the installation has finished.

Test

The GNU Arm Compiler adds a path to the environment variable during installation, as shown in Step 3 in the
“GNU Arm Installation” section. This section will explain how to use the “Command Prompt” to test whether the
GNU Arm installation has finished.

Step 1. Enable the Command Prompt.
There are several methods for enabling the command prompt, which will be explained in the “Run” Window and
“Menu” selection in the following section.

Enable via the “Run” Window: First press “Windows + R” keys on the keyboard and enter “cmd” in the pop-up

“Run” window as shown in the following figure. Then press “OK” to enable the Command Prompt.

Select from the “Menu”: Click the “Start” menu, then find and open the Windows System folder. Click on

“Command Prompt”, as shown in the following figure.

Step 2. Enter “arm-none-eabi-gcc -v” on the enabled Command Prompt and the following screen will appear,
indicating that the command is valid. This means that the GNU Arm installation has finished and that the Arm
program code can be compiled. At the same time, the installation path can be confirmed using the Command

Prompt output. This is shown by the path marked by the dotted line in the red dotted box in the figure.

Used with GNU Make

This chapter describes how to use the GNU Arm Compiler with GNU Make.

GNU Make Installation

Step 1. Click the following link to download the EXE file for GNU Make installation.

http://gnuwin32.sourceforge.net/packages/make.htm

Note: The file name is similar to “make-3.81.exe

Step 2. In the “Select Destination Location” step, as shown in the following figure, copy and save the installation
path during installation. The path will be configured into an environment variable later. For example:
“C:\Program Files (x86)\GnuWin32”

http://gnuwin32.sourceforge.net/packages/make.htm

Step 3. Add an extra character “\bin” to the copied path in Step 2 and configure it in the environment variable
“Path” to add a path for the GNU Make tool. Refer to the two following figures, which show how to enable the
environment variable, and find the “Path” edit and add a path.
Note: The entire path is similar to “C:\Program Files (x86)\GnuWin32\bin”.

Step 4. Test the “make-v” command using the Command Prompt and the following screen will appear, indicating
that the command is valid. This means that the GNU Make installation has finished.
Note: Refer to the “Enable Command Prompt” contents in the “Test” section for the Command Prompt enabling
method.

Compile and Output

This section will describe the compilation method and output results using a Firmware Library Project Template (…
\project template\IP\Example), which includes compilation commands, output messages and output files etc.
Step 1. Enable the Command Prompt and change the operating directory to the “GNU_ARM” folder in the
Firmware Library Project Template.
(\\HT32_STD_5xxxx_FWLib_Vm.n.r_s\project_template\IP\Example\GNU_ARM)

Step 2. Enter a “make xxxxx” or “make –f xxxxx.mk” command to build a program. When all build operations have
finished, a “BUILD SUCCESSFUL” message should appear as shown in the following figure.
(xxxxx is the IC device, here a 52352 is used)

Step 3. After completing Step 2, the Hex and Binary files can be found in the following path. Then update the
firmware to the Starter Kit using other programming tools such as e-Writer32, HT32 ICP Tool, e-Link32 Pro/Lite,
HT32 Flash Programmer and ISP bootloader. The next section will introduce programming using the e-Link32 Pro
/ Lite.
“…\GNU_ARM\HT32M\xxxxx\Obj\HT32.bin”
“…\GNU_ARM\HT32M\xxxxx\Obj\HT32.hex”

Programming using the e-Link32 Pro/Lite

This section will take the HT32F52352 Starter Kit (SK) as an example. First, it introduces the environment

preparation operations for the Starter Kit (SK) and e-Link32 Pro / Lite, and then explains how to use “make
IC=xxxxx eraseall/program/run” and Command Prompt resultsin sequence. Finally it explains how to observe
whether the programming is successful or not through the SK status.
The environment preparation operations for the SK and e-Link32 Lite are as follows:
(1) There are two USB COM ports on the board. Here the PC is connected to the e-Link32 Lite port on the board
using a USB cable, as shown by (a) in the following figure.
(2) The VCP (Virtual COM Port) function of the e-Link32 Lite is required for programming confirmation. Ensure
that the UART Jumper-J2*1 jumper cap shorts the PAx*2 and DAP_Tx pins. The jumper location is shown by (b)
in the following figure.
Note: 1. J2 on the SK provides two settings which are to short the PAx and DAP_Tx pins or short the PAx and
RS232_Tx pins. Refer to the Starter Kit User Manual for details.
2. The pin is named PAx here because the setting for the MCU UART RX pin varies in different SKs.

The environment preparation operations for the SK and e-Link32 Pro is as follows: One side of the e-Link32 Pro is
connected to the PC using a Mini USB data cable and the other side is for the SWD interface. The e-Link32 Pro is
required to connect to the SWD-10P on the SK using a 10-pin gray flat cable, as shown in the following figure (a).

The following section will describe the “make IC=xxxxx eraseall/program/run” command usage and the Command
Prompt results in sequence.

Step 1. Enter a “make IC=xxxxx eraseall” or “make-f xxxxx.mk eraseall” command in the “Command Prompt”
window. If successful, the “ERASEALL SUCCESS” message will appear on the screen, as shown in the following
figure.
(xxxxx is the IC device, here a 52352 is used).
Note: This command is used to execute a Flash Mass Erase operation.

Step 2. Enter a “make IC=xxxxx program” or “make-f xxxxx.mk program” command in the “Command Prompt”
window. If successful, the “PROGRAM SUCCESS” message will appear on the screen, as shown in the following
figure.
(xxxxx is the IC device, here a 52352 is used).

Step 3. Enter a “make IC=xxxxx run” or “make-f xxxxx.mk run” command in the “Command Prompt” window. If
successful, the “RUN SUCCESS” message will appear on the screen, as shown in the following figure. The SK will
operate according to the example program and its status when programmed successfully is shown in Step 4.
(xxxxx is the IC device, here a 52352 is used)

Step 4. When the Step 3 action has finished, this step will be continued to determine whether the programming
has been successful by checking the SK status. This can be verified using the LED or terminal software. Refer to
the “Terminal Software” section for the terminal software settings. The status description will be given below.
When the “RUN SUCCESS” message appears on the screen, both LED1 and LED2 will blink. Their positions are
shown at the bottom left of the following figure. The following message will then be displayed “Hello World! 0” ~
“Hello World! 99” on the PC’s terminal software via the Virtual COM Port, as shown on the right side of the
following figure. Both can be used to verify that the environment has been successfully used.

Setting Description

This section describes the related files purpose in the GNU_ARM directory, as shown in the following table.

Folder/File Name Description

\\project_template\IP\Example\GNU_ARM

xxxxx.mk Makefile file, xxxxx is IC device

linker.ld Linker Script

Makefile Makefile file

Project_xxxxx.uvprojx Project, xxxxx is IC device

It will now be explained how to add a .c file, include path or C/S Preprocessor Define by modifying the makefile file
named “xxxxx.mk”.

Note: This section uses 52352.mk as an illustration.

Add a .c file. This part is used to set the project .c file, the following method is used.

Open the 52352.mk, search for “Source files”, the settings shown below appear on the screen,

which can be added using “SOURCE_NAME_PATH +=” append “.c file path and name”.

Include Path. This part is used to add Include Paths, which provide multiple paths to search for the header file

(.h file), the following method is used.

Open the 52352.mk, search for “Include Path”, the settings shown below appear on the screen, which

can be added using “INCLUDE_PATH += -I./ ” append “Path”.

C/S Preprocessor Define. This part is used to add a Preprocessor Define message, the following method is

used.

Open the 52352.mk, search for “Preprocessor Define”, the settings shown below appear on the screen.

The adding methods for a .c Preprocessor Define is slightly different from a .s Preprocessor Define. This

is arranged as follows.

► c Preprocessor Define: “C_Option += -D” + “Define content” For example: C_OPTION += -

DUSE_HT32_DRIVER.

► .h Preprocessor Define: “S_Option = –defsym” + “Define content” For example: S_OPTION = –defsym

USE_HT32_CHIP=4

Used with the Keil MDK-ARM uVision

This chapter describes how to use the GNU Arm Compiler with the Keil MDK-ARM uVision. Note: This part
requires the use of Keil MDK-ARM. First go to the Keil official website to obtain the EXE file for Keil MDK-ARM
installation and complete the installation. The Keil official website installation link is as follows.

https://www.keil.com/demo/eval/arm.htm

Note: The file name is similar to “MDK537.EXE”.

Project Settings

Step 1. Open a Project_xxxxx.uvprojx project file from the Firmware Library. Here a 52352 is used.
\\HT32_STD_5xxxx_FWLib_Vm.n.r_s \project_template\IP\Example\GNU_ARM\Project_xxxxx.uvprojx Note:
xxxxx is the device name.

Step 2. Click the “Manage Project Items” icon and then click the “Folders/Extensions” option. Select “Use GCC
Compiler (GNU) for ARM projects” and then copy the GNU Arm installation path to the “Folder” text box, as shown
in the following figure.
Note: For the GNU Arm installation path, refer to the path copied in Step 2 of the “GNU Arm Installation” section in
the “GNU Arm Compiler Installation” chapter.

Compile and Test

Step 1. Click “Build (F7)” to build a project.
Step 2. Check “Build Output” window to confirm whether the program has been built correctly.

Step 3. Connect the e-link32 lite USB COM port on the HT32F52352 Starter Kit to the PC, as shown in the red
box on the left side of the following figure. Confirm that the PC has detected the USB device normally, as shown in
the red box on the right side of the following figure.

Step 4. Click “Download (F8)” to download the code to the Flash memory.

Step 5. A jumper cap is placed on the DAP_TX and PA5 pins to short them, as shown in the following figure. Then
the PC terminal software (Tera Term) will be configured and the COM Port will be set according to Step3. Refer to
the “Terminal Software” section for the detailed Tera Term configuration.

Step 6. When the “Reset” key has been pressed, both LED1 and LED2 will blink as shown on the left side of the
following figure. The messages “Hello World! 0” ~ “Hello World! 99” will appear in the “Tera Term” window via the
Virtual COM Port, as shown on the right side of the following figure. This is used to verify that it has been
successfully used with the Keil MDK-ARM uVision GNU Arm Compiler.

Common Problems

This chapter assists with some of the common problems which may be encountered.

Error messages which may appear After Build

If executing “After Build”, the following error message will be generated. Try to reboot the computer or run the

Keil MDK-ARM as an administrator to make the “After Build” operation successful.

If this problem cannot be resolved using the above steps, the user can also disable the “After Build/Rebuild”

option as shown in the following figure.

Note: When the “After Build/Rebuild” option is disabled, the Keil will no longer output binary format and Code

size messages.

Firmware Library Version Requirements

If the “GNU Arm Compiler” is used with the “GNU Make” or the “Keil MDK-ARM uVision”, it should be noted that
only the following version or higher Firmware Library versions support the GNU Arm project files.

HT32_STD_5xxxx_FWLib_V1.0.26_nnnn.zip

HT32_STD_1xxxx_FWLib_V1.0.11_nnnn.zip

Conclusion

This application note first provided a brief description of the GNU Arm. This was followed by an explanation to
show users how to install and test the GNU Arm Compiler. It then described how to use it with the “GNU Make” or
“Keil MDK-ARM uVision”. Finally, there was an explanation of how to use the GNU Arm Compiler with the HT32
MCUs.

Reference Material

For more information, consult to the Holtek official website: www.holtek.com.

Revision and Modification Information

Date Author Issue Modification Information

2022.05.13 ��� V1.00 First Version

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing on this website
(‘Information’) are for reference only and is subject to change at any time without prior notice and at the discretion
of Holtek Semiconductor Inc. and its related companies (hereinafter ‘Holtek’, ‘the company’, ‘us’, ‘we’ or ‘our’).
Whilst Holtek endeavors to ensure the accuracy of the Information on this website, no express or implied warranty
is given by Holtek to the accuracy of the Information. Holtek will bear no responsibility for any incorrectness or
leakage.

Holtek will not be liable for any damages (including but not limited to computer virus, system problems or data
loss) whatsoever arising in using or in connection with the use of this website by any party. There may be links in
this area, which allow you to visit the websites of other companies. These websites are not controlled by Holtek.
Holtek will bear no responsibility and no guarantee to whatsoever Information displayed at such sites. Hyperlinks
to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or howsoever
caused directly or indirectly in connection with your access to or use of this website, the content thereon or any
goods, materials or services.

Governing Law

The Dislaimer contained in the website shall be governed by and interpreted in accordance with the laws of the
Republic of China. Users will submit to the non-exclusive jurisdiction of the Republic of China courts

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all changes are effective
immediately upon posting to the website.

Documents / Resources

HOLTEK HT32 MCU GNU Arm Compiler [pdf] User Guide
HT32 MCU, HT32 MCU GNU Arm Compiler, GNU Arm Compiler, Arm Compiler

References

https://manuals.plus/m/f80ec74cf28bbcbaab89db405f5b47daa74fba840e3b3a3901cad995f3bf8885
https://manuals.plus/m/f80ec74cf28bbcbaab89db405f5b47daa74fba840e3b3a3901cad995f3bf8885_optim.pdf

 Make for Windows

 Arm GNU Toolchain

 HT32 Development Resource Download

 MDK-ARM Version 5.38a Evaluation Software Request

Manuals+, home privacy

http://gnuwin32.sourceforge.net/packages/make.htm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://mcu.holtek.com.tw/ht32/resource/
https://www.keil.com/demo/eval/arm.htm
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/privacy-policy

	HOLTEK HT32 MCU GNU Arm Compiler User Guide
	Introduction
	Resource Download and Preparation
	Firmware Library
	Terminal Program

	GNU Arm Compiler Installation
	GNU Arm Installation
	Test

	Used with GNU Make
	GNU Make Installation
	Compile and Output
	Programming using the e-Link32 Pro/Lite

	Setting Description
	Used with the Keil MDK-ARM uVision
	Project Settings
	Compile and Test

	Common Problems
	Firmware Library Version Requirements

	Conclusion
	Reference Material
	Revision and Modification Information
	Disclaimer
	Limitation of Liability
	Governing Law
	Update of Disclaimer

	Documents / Resources
	References

