HOBBYWING EZRUN MINI28 Brushless Electronic Speed Controller User Manual Home » HOBBYWING » HOBBYWING EZRUN MINI28 Brushless Electronic Speed Controller User Manual ### **Contents** - 1 HOBBYWING EZRUN MINI28 Brushless Electronic Speed Controller User **Manual** - 2 1. Introduction - 3 2. Warnings - 4 3. Feature - 5 4. Specifications - 6 5. Connections - 7 6. ESC Setup - 8 7. Explanation of LED Status - 9 8. Trouble shooting - 10 Documents / Resources - 11 Related Posts **HOBBYWING EZRUN MINI28 Brushless Electronic Speed Controller User Manual** # 1. Introduction Congratulations and thank you for your trust in Hobbywing product. By purchasing the EZRUN MINI28, you have chosen a high performance sensored brushless electronic speed controller! This speed controller is equipped with high-tech features to enhance your experience with Hobbywing brushless power systems. Improper usage and unauthorized modification to our product is extremely dangerous and may damage the product and related devices. Please take your time and read the following instructions carefully before you start using your speed control. We have the right to modify our product design, appearance, features and usage requirements without notification. We, HOBBYWING, are only responsible for our product cost and nothing else as result of using our product. # 2. Warnings - To avoid short circuits, ensure that all wires and connections must be well insulated before connecting the ESC to related devices. - Ensure all devices are well connected to prevent poor connections and avoid damage to your electronic devices. - Read through the manuals of all power devices and chassis and ensure the power configuration is rational before using this unit. - Please use a soldering iron with the power of at least 60W to solder all input / output wires and connectors. - Stop immediate usage once the casing of the ESC exceeds 90°C / 194°F as this may cause damage to both the ESC and motor. Hobbywing recommends setting the "ESC Thermal Protection" to 105°C / 221°F (this refers to the internal temperature of the ESC). - Users must always disconnect the batteries after use as the current on the ESC is consuming continuously if it is connected to the batteries (even if the ESC is turned off). The battery will completely be discharged and may result in damage to the battery or ESC when it is connected for a long period of time. This WILL NOT be covered under warranty. #### 3. Feature - The special program for Mini Z racing, rich and exquisite adjustable parameters to meet the needs of different tracks and controls. - The throttle driving frequency, brake frequency and initial throttle force are adjustable to realize the driver's accurate adjustment of the motor driving and braking. - Multiple protection functions: low battery voltage protection, ESC overheat protection, fail-safe protection(theottle signal loss protection). - Support LCD G2 program box and OTA programmer to set parameters of esc. - Support the upgrade of esc firmware (LCD G2 program box or OTA programmer shall be purchased separately) and enjoy the latest functions. # 4. Specifications | Model | EZRUN MINI28 | | | | | |--------------------|---------------------------------------------|--|--|--|--| | Cont./Peak Current | 30A / 80A | | | | | | Motor Type | Sensored / Sensorless Brushless Motors | | | | | | Applications | 1/28 Mini Z | | | | | | Motor Limit | 1626 Size Mator | | | | | | LiPo/NiMH Cells | 2S Lipo | | | | | | BEC Output | 6V/7.4V Adjustable, 3.5A Peak (Switch-mode) | | | | | | Size | 22.7x14.2x11.8mm | | | | | | Weight | 5g (without wires) | | | | | | Programming Port | Shared with throttle cable | | | | | | | | | | | | # 5. Connections This is an extremely powerful brushless motor system. For your safety and the safety of those around you, we strongly recommend removing the pinion gear attached to the motor before performing calibration and programming functions with this system. It is also advisable to keep the wheels in the air when you turn on the ESC. # 1. Motor Wiring The motor wiring is different between the sensored and the sensorless; please only follow the introductions below. #### Sensored Motor Wiring There is strict wiring order from the ESC to the motor, the three A/B/C ESC wires must connect to the three A/B/C motor wires correspondingly. Next, connect the ESC sensor port and the motor sensor port with the stock 5-pin sensor cable. If you don't plug the sensor cable in, your ESC will still work in sensorless mode even if you're using a sensored motor. • Sensorless Motor WiringUsers do not need to be worried in regards to the connectivity with the A/B/C(ESC and motor) as there is no polarity. You may find it necessary to swap two wires if the motor runs in reverse. ### 2. Receiver Wiring The throttle control cable on the ESC has to be plugged into the throttle (TH) channel on the receiver. The throttle control cable has an output voltage of 6V / 7.4V to the receiver and steering servo, hence, no separate battery can be connected to the receiver. Otherwise, your ESC may be damaged. # 3. Battery Wiring Proper polarity is essential. Please ensure positive (+) connects to positive (+), and negative (-) connects to negative (-) when plugging in the battery! When reverse polarity is applied to the ESC from the battery, it WILL damage the ESC. This WILL NOT be covered under warranty! # 6. ESC Setup # 1. ESC / Radio Calibration Begin using your ESC by calibrating with your transmitter. We strongly recommend Hobbywing users to use the "Fail Safe" function on the radio system and set (F/S) to "Output OFF" or "Neutral Position". Example of calibrating Neutral range and Endpoint. # 3. Set the neutral point, the full throttle endpoint and the full brake endpoint. - Leave transmitter at the neutral position, press the "ON/OFF" button, the RED LED dies out and the GREEN LED flashes 1 time and the motor beeps 1 time to accept the neutral position. - Pull the throttle trigger to the full throttle position, press the "ON/OFF" button, the GREEN LED blinks 2 times and the motor beeps 2 times to accept the full throttle endpoint. - Push the throttle trigger to the full brake position, press the "ON/OFF" button, the GREEN LED blinks 3 times and the motor beeps 3 times to accept the full brake endpoint. Note: - The end position of forward: Pull the trigger to the maxim um throttle position if it is pistol-style transmitter. Push the throttle to the top if it is board-style transmitter. - The end position of backward: Push the trigger to the maximum brake position if it is pistol-style transmitter. Pull the throttle to the bottom if it is board-style transmit ter. ### 4. The motor can be started 3 seconds after the ESC/Radio calibration is complete. #### 2. Power On/Off Short press ON/OFF button to power-on, long press on ON/OFF button to shut down. Note: To prevent accidental shutdown, when the motor is running, it cannot be shut down by clicking the switch button, it can only be shut down when the motor stops running, when it cannot be shut down in case of emergency, please disconnect the battery directly. # 3. Programmable Items | ection | Item | Programmable Items | | | | | | | Paramet | er Value | , | | | | | | |-----------------|------|-------------------------|-------------------------------|----------------------------|-------|------------------|-------------|---------|-----------|---------------|-----------|-----------|-------------|----------|------|-----| | General Setting | 14. | Running Mode | Forwi | ed with Bra | Ac Fo | revend/ R/ | everse with | h Brake | Forward a | nd Reverse | | | | | | | | | 10. | Max. Forward Force | | | | | | | 30%-1 | 00% Adju | table | | | | | | | | 10 | Max. Reverse Force | | 25% | | 50% | | 75% | | | 100% | | | | | | | | 10 | Cutoff Voltage | | Disabled | | Auto (3.5V/Cell) | | | | | 4.0-7 | AV Adjust | table (Step | 0.1V) | | | | ŝ | 16 | ESC Thermal Protection | Disabled | | | 105°C / 221°F | | | 125°C / | 257°F | | | | | | | | | t# | BEC Voltage | | 6.0V | | | 7.41/ | | | | | | | | | | | | 16 | Motor Rotation | | CCW | | | CW | | | | | | | | | | | | 2A | Throttle Rate Control | | 1-30 Adjustable (Stept. 1) | | | | | | | | | | | | | | the Control | 28 | Neutral Range | 3%-10% Adjustable (Step: 1%) | | | | | | | | | | | | | | | | 20 | Initial Throttle Force | 1%-15% Adjustable Step: 1%) | | | | | | | | | | | | | | | 8 | 20 | Coast | 0%-15% Adjustable (Step: 1%) | | | | | | | | | | | | | | | 1 | 26 | PWM Drive Frequency | 110 | 210 | 4K | | 8K | 126 | 16K | 24K | 32% | | | Customia | rd . | | | * | 29 | Softening Value | 0-30° Adjustable (Step: 1°) | | | | | | | | | | | | | | | | 20 | Softening Range | 0% | 10% | 20% | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | | 6 | 3A. | Drag Brake Force | ON-100% Adjustable (Step: 1%) | | | | | | | | | | | | | | | Ordin | 38 | Max. Brake Force | | | | | | | 0%-100% / | icijustable (| Step: 1%) | | | | | | | Brake Control | 3C | Brake Rate Control | 1-20 Adjustable (Step: 1) | | | | | | | | | | | | | | | ä | 30 | Brake Frequency | 110 | 210 | 310 | | 460 | 6K | BK. | 124 | 16K | | | Customia | rd | | | | 4A | Boost Timing | | | | | | | 0-56° Ad | justable (5) | ep: 15 | | | | | | | | 48 | Boost Timing Activation | | RPM | | | Auto. | | | | | | | | | | | Territory | 40 | Boost Start RPM | | | | | 500-35 | DOORPM (Step | 500RPM) | | | | | | |-----------|-----|---------------------|------------------------------|------------------------------|------------|-------------|------------|--------------|------------|------------|------------|------------|---------|--| | | 4D | Boost End RPM | | 3000-60000RPM (Skep: 500RPM) | | | | | | | | | | | | | SA. | Turbo Timing | Q-Sif* Adjustable (Step: 1*) | | | | | | | | | | | | | | 58 | Turbo Doley | Instant | 0.025 | 0.054 | 0.1s | 0.154 | 0.25 0. | 254 0.34 | 0.4s | 0.5s | 0.7s | 1.0s | | | | 5C | Turbo Increase Rate | 3deg/0 fs | 60ey0.1s | 9deg/0.1s | 12:deg/0:1s | 15deg/0.1s | 18deg/0 ts | 21deg/0.1s | 24deg/0.1s | 27deg/0.1s | 30deg/0.1s | Instant | | | | 50 | Turbo Decrease Rate | 3deg/0.1s | 6deg/0.1s | .9deg/0.1s | 12deg/0.1s | 15deg/0.1s | 18deg/0.1s | 21deg/0.1s | 24deg/0.1s | 27deg/0.1s | 30deg/0.1s | Instant | | # • 1A. Running Mode Option 1: Forward with Brake Racing mode. It has only forward and brake functions. Option 2: Forward/ Reverse with Brake This option is known to be the "training" mode with "Forward/ Reverse with Brake" functions. Hobbywing has adopted the "DOUBLE-CLICK" method, that is your vehicle only brakes on the 1st time you push the throttle trigger forward (brake) (1st push). The motor stops when you release the throttle trigger and then re-push the trigger (2nd push), only then the vehicle will reverse. The reverse function will not work if your car does not come to a complete stop. The vehicle only reverses after the motor stops. This method is for preventing vehicle from being accidentally reversed. Option 3: Forward and Reverse This mode is often used by special vehicles (rock crawler). It adopts the "SINGLE-CLICK" method. The vehicle will reverse immediately when you push the throttle trigger forward (brake). #### 1B. Max.Forward Force It refers to the force generated when the throttle trigger is at the maximum forward position. Different forward speeds can be generated by setting different values. #### 1C. Max. Reverse Force The reverse force of the value will determine its speed. For the safety of your vehicle, we recommend using a low amount. ### 1D. Cutoff Voltage Sets the voltage at which the ESC lowers or removes power to the motor in order to either keep the battery at a safe minimum voltage (for LiPo batteries). The ESC monitors the battery voltage all the time, it will immediately reduce the power to 50% (in 3 seconds) and cut off the output 40 seconds later when the voltage goes below the cutoff threshold. The RED LED will flash a short, single flash that repeats $(\diamondsuit, \diamondsuit, \diamondsuit)$ to indicate the low-voltage cutoff protection is activated. Please set the "Cutoff Voltage" to "Disabled" or customize this item if you are using NiMH batteries. Option 1: Disabled The ESC does not cut the power off due to low voltage. We do not recommend using this option when you use any LiPo battery as you will irreversibly damage the product. You need to select this option when you are using a NiMH pack. Option 2: Auto The ESC calculates the corresponding cutoff voltage for the battery shall be 7.0V. Option 3: Customized The customized cutoff threshold is a voltage for the whole battery pack (adjustable from 4.0V to 7.4V). # • 1E. ESC Thermal Protection The output from the ESC will be cut off with the value you have preset. The GREEN LED flashes $(\diamondsuit, \diamondsuit, \diamondsuit)$ when the ESC temperature reaches to the preset value. The output will not resume until the ESC temperature gets down. Warning! Please do not disable this function unless you're in a competition. Otherwise the high temperature may damage your ESC and even your motor. # 1F. BEC Voltage BEC voltage can be adjusted by 6.0V/7.4V. 6.0V is applicable to common servo. If use high-voltage servo, set to higher voltage according to voltage marking of servo. #### • 1G. Motor Rotation/Direction With the motor shaft faces you (the rear end of the motor is away from you), increase the throttle input, the motor (shaft) will rotate in the CCW/CW direction if the "Motor Rotation / Direction" set to "CCW/CW". Generally, the vehicle runs forward when the motor (shaft) rotates in the CCW direction. However, some vehicles only run forward when the motor rotates in the CW direction due to the different chassis design. In that case, you only need to set the "Motor Rotation/Direction" to "CW). ### • 2A. Throttle Rate Control This item is used to control the throttle response. It can be adjustable from 1 to 30 (step: 1), the lower the throttle rate, the more the limit will be on the throttle response. A suitable rate can help driver to control his vehicle properly during the starting-up process. Generally, you can set it to a high value to have a quick throttle response if you are proficient at throttle control. # 2B. Neutral Range As not all transmitters have the same stability at "neutral position", please adjust this parameter as per your preference. You can adjust to a bigger value when this happens. #### 2C. Initial Throttle Force It also called as minimum throttle force. You can set it according to wheel tire and traction. If the ground is slippery, please set a small throttle force. Some motors have strong cogging effect with lower FDR number. When you push throttle a little bit, the motor will not rotate until a higher throttle point than the default initial throttle point. When we have this parameter, we can use the transmitter trim to check the above issue and then adjust the best initial throttle point by increasing the ITF a little. The control feeling will be smoother if you find the best point. Normally the number will be not over 5%. #### 2D. Coast The RPM of the motor will be lowered gradually when throttle is reduced. The vehicle will not reduce speed abruptly when the throttle is reduced to return to the neutral position. The bigger the value, the more the "COAST" will be felt. Example, COAST of 0 deactivates, and a COAST of 20% would be the maximum amount of COAST. What is COAST? When a vehicle has a larger final drive ratio, the tendency of having a "drag" feel is higher. The "COAST" technology is to allow the car to roll (coast) even when the final drive ratio is high. The Coast function brings better and smoother control feeling to racers. Some drivers will refer to this to the traditional brushed motors. Note: The "Coast" will be void (even if you set it to any value besides 0) if the above "drag brake" is not "0%". # • 2E. PWM Drive Frequency The acceleration will be more aggressive at the initial stage when the drive frequency is low; a higher drive frequency is smoother but this will create more heat to the ESC. If set this item to "Customized", then the PWM frequency can be adjusted to a variable value (which ranges from 0K to 32K) at any 0-100% throttle input, Please choose the frequencies as per the actual test results of your vehicles. ### 2F. Softening Value It allows users to fine-tune the bottom end, change the driving feel, and maximize the driving efficiency at different track conditions. The higher the "Softening Value", the milder the bottom end. In Modified class, drivers often feel the power of the bottom end is too aggressive. Little throttle input usually brings too much power to the car and make it hard to control at the corners, so HOBBYWING creates this softening function to solve the issue. Note: You can increase the motor mechanical timing accordingly after you set the softening value. Every time you increase the softening value by 5 degrees, you can increase the mechanical timing by 1 degree. For example, if you set the softening value to 20 degrees, then you can increase the mechanical timing by 4 degrees. Please note that you will never increase the mechanical timing by over 5 degrees. # 2G. Softening Range It's the range to which "Softening Value" starts and ends. For example, 0% to 30% will be generated when the user pre-programs the "Softening Range" at a value of 30%. # 3A. Drag Brake It is the braking power produced when releasing from full speed to neutral position. This is to simulate the slight braking effect of a neutral brushed motor while coasting. It's not recommended for buggy and monster truck. (Attention! Drag brake will consume more power and heat will be increased, apply it cautiously.) ### • 3B. Max. Brake Force This ESC provides proportional braking function; the braking effect is decided by the position of the throttle trigger. It sets the percentage of available braking power when full brake is applied. Large amount will shorten the braking time but it may damage your pinion and spur. #### 3C. Brake Rate Control It's adjustable from 1 to 20 (step: 1), the lower the brake rate, the more limit on the brake response. A suitable rate can aid the driver to brake his vehicle correctly. Generally, you can set it to a high value to have a quick brake response. # • 3D. Brake Frequency The brake force will be larger if the frequency is low; you will get a smoother brake force when the value is higher. If set this item to "Customized", then the brake frequency can be adjusted to a variable value (which ranges from 0K to 16K) at any 0-100% throttle input, Please choose the frequencies as per the actual test results of your vehicles. # • 4A. Boost Timing It is effective within the whole throttle range; it directly affects the car speed on straightaway and winding course. The ESC adjusts the timing dynamically as per the RPM (when "Boost Timing Activation" set to "RPM") or throttle amount (when "Boost Timing Activation" set to "Auto") in the operation. The Boost Timing is not constant but variable. # 4B. Boost Timing Activation Option 1: RPM In RPM mode, the ESC adjusts the Boost Timing dynamically as per the motor speed (RPM). The actual Boost Timing is 0 when the RPM is lower than the Boost Start RPM. The Boost Timing changes as per the RPM when the RPM change is between the Boost Start RPM and the Boost End RPM. For example, if the Boost Timing is set to 5 degrees and the Boost Start RPM is 10000, the Boost End RPM is 15000. The Boost Timing corresponds to different RPM is shown below. When the RPM is higher than the Boost End RPM, the actual Boost Timing is the value you had previously set. Option 2: Auto In Auto mode, the ESC adjusts the Boost Timing dynamically as per the throttle amount. Only at full throttle, the actual Boost Timing is the value you had previously set. | RPM (Motor Speed) | <10000 | 10001-11000 | 11001-12000 | 12001-13000 | 13001-14000 | 14001-15000 | >15000 | |---------------------|----------|-------------|-------------|-------------|-------------|-------------|-----------| | Actual Boost Timing | 0 Degree | 1 Degree | 2 Degrees | 3 Degrees | 4 Degrees | 5 Degrees | 5 Degrees | ### 4C. Boost Start RPM This item defines the RPM at which Boost Timing is activated. For example, when the Boost Start RPM is set to 5000, the ESC will activate the corresponding Boost Timing when the RPM goes above 5000. The specific value is determined by the Boost Timing and the Boost End RPM you had previously set. ### • 4D. Boost End RPM This item defines the RPM at which Boost Timing (you specifically set) is applied. For example, when Boost Timing is set to 10 degrees and the Boost End RPM to 15000, the ESC will activate the Boost Timing of 10 degrees when the RPM goes above 15000. The ESC will adjust the Boost Timing accordingly as per the actual RPM when the RPM goes below 15000. ### 5A. Turbo Timing This item is adjustable from 0 degree to 64 degrees, the corresponding turbo timing (you set) will initiate at full throttle. It's usually activated on long straightaway and makes the motor unleash its maximum potential. # 5B. Turbo Delay When "TURBO DELAY" is set to "INSTANT", the Turbo Timing will be activated right after the throttle trigger is moved to the full throttle position. When other value(s) is applied, you will need to hold the throttle trigger at the full throttle position (as you set) till the Turbo Timing initiates. #### • 5C. Turbo Increase Rate This item is used to define the "speed" at which Turbo Timing is released when the trigger condition is met. For example, "6 degs/0.1sec" refers to the Turbo Timing of 6 degrees that will be released in 0.1 second. Both the acceleration and heat is higher when the "Turbo increase rate" is of a larger value. #### 5D. Turbo Decrease Rate After the Turbo Timing is activated and the trigger condition turns to not be met (i.e. vehicle slows down at the end of the straightaway and gets into a corner, full throttle turns to partial throttle, the trigger condition for Turbo Timing turns to be not met), if you disable all the Turbo Timing in a moment, an obvious slow-down like braking will be felt and cause the control of vehicle to become bad. If the ESC can disable the Turbo Timing at some "speed", the slow-down will be linear and the control will be improved. Warning Boost Timing & Turbo Timing can effectively improve the motor efficiency; they are usually used in competitions. Please take some time to read this manual and then set these two items carefully, monitor the ESC & motor temperatures when you have a trial run and then adjust the Timing and FDR accordingly as aggressive Timings and FDR may cause your ESC or motor to be burnt. # 4. ESC Programming 1) Program your ESC with a multifunction LCD G2 program box You can program this ESC via a multifunction LCD G2 program box or via a multifunction LCD G2 program box & a PC (HOBBYWING USB LINK software needs to be installed on the PC). Before programming, you need to connect your ESC and the LCD G2 program box through throttle cable and turn on the ESC; Press any button on the program box to initiate the communication between your ESC and the program box. Seconds later, you can adjust the setting via "ITEM" & "VALUE" buttons, and press the "OK" button to save new settings to your ESC. 2) Program your ESC with a OTA Programmer This esc can also be programmed via a OTA Programmer along with smart phone devices (HW Link App software needs to be installed on the smart phone). Before programming, you need to connect the esc(throttle cable) and OTA Programmer via a "Y" shaped transfer cable. For detailed information about ESC programming via OTA Programmer, please refer to the user manual of Hobbywing's OTA Programmer. Attention! This esc needs to use the throttle cable to connect the program box or OTA programme # 5. Factory Reset - Restore the default values with a multifunction LCD G2 program box After connecting the program box to the ESC, continue to press the "ITEM" button on the program box until you see the "RESTORE DEFAULT" item, and press "OK" to factory reset your ESC. - Restore the default values with a OTA Programmer (& HW Link App) After connecting the OTA Programmer to the ESC, open the HOBBYWING HW Link App on your smart phone, select "Parameters" followed by "Factory Reset" to reset the ESC. # 7. Explanation of LED Status # 1. During the Start-up Process • The RED LED turns on solid indicating the ESC doesn't detect any throttle signal or the throttle trigger is at the neutral position. • The GREEN LED flashes rapidly indicating the neutral throttle value stored on your ESC may be different from the current value stored on the transmitter. When this happens, re-calibrate the throttle range. # 2. In Running - The RED LED turns on solid and the GREEN LED dies out when the throttle trigger is in the throttle neutral zone. The RED LED will blink quickly if the total value of Boost Timing and Turbo timing is 0. - The RED LED dies out and the GREEN LED blinks when your vehicle runs forward. The GREEN LED turns solid when pulling the throttle trigger to the full (100%) throttle endpoint. - The RED LED dies out and the GREEN LED blinks when you brake your vehicle. The GREEN LED turns solid when pushing the throttle trigger to the full brake endpoint and setting the "maximum brake force" to 100%. - The RED LED dies out, the GREEN LED blinks when you reverse your vehicle. The GREEN LED turns solid when pushing the throttle trigger to the full brake endpoint and setting the "reverse force" to 100%. # 3. When Some Protection is Activated - The RED LED flashes a short, single flash and repeats "☆, ☆, ☆" indicating the low voltage cutoff protection is activated. - The GREEN LED flashes a short, single flash and repeats "☆, ☆, ☆" indicating the ESC thermal protection is activated. - The RED & GREEN LEDS flash at the same time indicating the drive mode has been automatically switched to sensorless mode from senored mode because of abnormal sensor signal when pairing the ESC with a sensored motor. # 8. Trouble shooting | The ESC was unable to start the status LED, the motor it was powered on. | No power was supplied to the ESC; | Check if all ESC 6 battery connectors have been well soldered or
family connected. | | | |---|--|--|--|--| | The ESC was unable to start the motor, but the
RED LED on the ESC turned on solid. | The throttle cable was reversely plugged into
the TH channel or plugged into wrong channel on the receiver. | Plug the throttle cable into the throttle channel (CH2) by referring to relevant mark shown on your receiver. | | | | The vehicle ran backward when you pulled the throttle bigger towards you. | The (ESC-to-motor) wining order was incorrect, Your chassis is different from popular chassis. | Swap any two (ESC-to-motor) were if you are using a sensorless motor Set the parameter item "Motor Rotation". | | | | The motor suddenly stopped or significantly reduced the output in operation. | The receiver was influenced by some foreign interference; The ESC entered the LVC protection; The ESC entered the thermal shutdown protection. | Check all devices and try to find out all possible causes, and check the transmitten's battery voltage; The RID LID keeps flushing indicating the EVC protection is activated, please replace your pack; The GREBA LED keeps flushing indicating the thermal protection is activated, please let your ESC cool down before using it again. | | | | The motor stuttered but couldn't start. | The (ESC-to-motor) wring order was incorrect, The ESC was damaged. | Check if the wrong order is A-A, 8-8, and C-C; Contact the distributor for repair or other customer service. | | | | The vehicle could run forward (and brake), but could not reverse. | The throttle neutral position on your transmitter was actually in the braking zone; Set the "Running Mode" improperly; The ESC was damaged. | Recalibrate the throttle neutral position. No LED on the ESC will come on when the throttle rigger is at the neutral position; Set the "Running Mode" to "Fwdiffer with Brk."; Contact the distributor for repair or other customer service. | | | | The motor got stuck or stopped when increasing
the theorite during the starting-up process. | Poor docharging capability of the pack; The RPM of the motor was too high, or the FDR was too low; Set the "Funch/Start Mode" to a high level. | Change another pack with great discharging capability: Change a low-speed motor, or increase the FDR: Set the punctivitiest mode to a low level. | | | | The RED & GREEN LEDS on the ESC flashed rapidly
at the same time when the throttle trigger was at
the neutral position. | (When pairing with a sensored motor) the ESC
automatically switched to sensories mode
when it detected incorrect signal from Hall sensor. | Check if the sensor cable is loose or poor contact tosse exists; Hall sensor inside the motor is damaged. | | | #### Read More About This Manual & Download PDF: | 700 | HOBBYWING EZRUN MINI28 Brushless Electronic Speed Controller [pdf] User Manual EZRUN MINI28, Brushless Electronic Speed Controller, Electronic Speed Controller, Brushless Speed Controller, Speed Controller, Controller | |-----|---| | 700 | HOBBYWING EZRUN MINI28 Brushless Electronic Speed Controller [pdf] User Manual EZRUN MINI28 Brushless Electronic Speed Controller, EZRUN MINI28, Brushless Electronic Speed Controller, Electronic Speed Controller, Controller | Manuals+,