Heat flux Data Logger Selection Guide Owner's Manual Home » Heat flux » Heat flux Data Logger Selection Guide Owner's Manual **Heat flux Data Logger Selection Guide** #### **Contents** - 1 Introduction - 2 Optimise system design / reduce cost - 3 Heat flux sensors and the Hioki loggers - 4 Suggested use - 5 About Hukseflux - **6 CUSTOMER SUPPORT** - 7 Documents / Resources - 7.1 References - **8 Related Posts** # Introduction Hukseflux offers a wide range of sensors for heat flux and temperature measurement. The thermopile heat flux sensor and thermocouple temperature sensor are both passive sensors; they do not require power. Such sensors can be connected directly to data loggers and amplifiers. The heat flux in W/m2 is calculated by dividing the heat flux sensor's output, a small voltage, by its sensitivity. The sensitivity is provided with the sensor on its certificate and can be programmed into the data logger ## Optimise system design / reduce cost The following text helps you to select the right electronics for your application. Selecting the right electronics – sensor combination helps reducing total system costs. Figure 1 FHF05-50X50 foil heat flux sensor with thermal spreaders: thin, flexible and versatile. Figure 1 # Step 1 Visit the Hukseflux **YouTube** channel: - quick intro to heat flux (3 min); - online course (40 min); - separating radiation and convection (2 min); - latest heat flux technology (2 min). **Figure 2** Hioki LR8450: can handle up to 120 heat flux sensors each with its own temperature measurement and display the measurement results simultaneously on screen. Figure 2 # Step 2 Specify your measurement: - describe the purpose of the experiment; - estimate the heat flux levels in W/m2; - estimate the temperature levels in °C; - select a suitable sensor: most common examples are in Table 1. ## Step 3 Estimate the output range of the heat flux sensor in [x 10-6 V] using Table 1: Microvolt output range = heat flux range in [W/m2] x sensitivity in [x 10-6 V/(W/m2)]. Copyright by Hukseflux. Version 2302. We reserve the right to change specifications without prior notice Page 1/4. For Hukseflux Thermal Sensors go to www.hukseflux.com or e-mail us: info@hukseflux.com #### Step 4 Specify your electronics and sensors: - look up the brand and model of data logger you have or want to use; - estimate the number of heat flux and temperature channels you need. #### Step 5 #### Ask Hukseflux: • send all information and specifications to Hukseflux, and ask for our input / suggestions. Figure 3 Figure 3 Hioki LR8515 can transmit measurements of 1 sensor and 1 thermocouple via Bluetooth. # Heat flux sensors and the Hioki loggers Working with sensors and the logger is convenient. See the application notes for the Hioki <u>LR8432</u>, <u>LR8515</u> and <u>LR8450</u>. See the user manual for suggested solutions. See also our application note <u>how to install am heat flux sensor</u>. Read more about <u>Hioki data logger LR8450</u> and <u>FHF05 series in Battery EV Thermal Management</u>. Figure 4 PR electronics PR6331B programmable transmitter, can be mounted vertically or horizontally on a DIN rail Figure 4 # Suggested use Heat flux + temperature sensors and loggers are used to analyse the causes of temperature change. Also, they are used to validate mathematical CFD simulations. Figure 5 **Figure 5** Campbell CR1000X: 8 differential sensor inputs, heat flux and thermocouples, Micro USB B connection, ethernet, MicroSD data storage expansion. Figure 6 **Figure 6** dataTaker: up to 15 sensor inputs, heat flux and thermocouples, USB memory for easy data and program transfers. ### **About Hukseflux** Hukseflux is the leading expert in measurement of energy transfer. We design and manufacture sensors and measuring systems that support the energy transition. We are market leaders in solar radiation- and heat flux measurement. Customers are served through the main office in the Netherlands, and locally owned representations in the USA, Brazil, India, China, Southeast Asia and Japan. ## Interested in our products? E-mail us at: info@hukseflux.com **Table 1** Examples of different Hukseflux heat flux sensors, their application, sensitivity, temperature sensors and rated operating ranges for temperature and heat flux. This table shows a summary only and does not show all sensor models, options and specifications. Contact Hukseflux for a final check of your proposed solution. | SENSOR | APPLICATION | RATED T
RANGE | THERMOCO
UPLE | SENSITIVITY
HEAT FLUX | RATED
HF RAN
GE** | OPTIONAL RADIA
TIVE/ CONVECTIV
E | |---------|---------------|------------------|------------------|--------------------------|-------------------------|--| | [model] | [description] | [°C] | [type] | [x 10–6 V/(W/
m2)] | [± W/m2] | [y/n] | | | | | | | | I | |-----------------|---|-------------------|-----|-------|----------|----------------------| | FHF05-1
0X10 | high power microchi
ps, flexible | -40 to +15
0 | Т | 1 | 10 000 | Y (stickers) | | FHF05-1
5X30 | high heat flux in ove
ns, flexible | -40 to +15 | Т | 3 | 10 000 | Y (stickers) | | FHF05-5
0X50 | general purpose
heat flux, battery the
rmal management, fl
exible | -40 to +15 | Т | 13 | 10 000 | Y (stickers) | | FHF05-1
5X85 | vrapped around a pi
pe, flexible | -40 to +15 | Т | 7 | 10 000 | Y (stickers) | | FHF05-8
5X85 | low fluxes, insulation
performance testing,
low accuracy datalo
gger and amplifiers,
flexible | -40 to +15
0 | Т | 50 | 10 000 | Y (stickers) | | FHF06-2
5X50 | heat flux in high tem
perature
environments | -70 to +25 | Т | 5 | 20 000 | Y (coating) | | IHF01 | high temperature / h
igh heat flux, industri
al | -30 to 900 | К | 0.009 | 1 000 00 | Y (coating) | | IHF02 | high temperature / I
ow heat flux, industri
al | -30 to 900 | К | 0.25 | 100 000 | Y (coating) | | HFP01 | very low heat fluxes,
buildings, soil | -30 to +70 | N/A | 60 | 2 000 | Y (stickers) | | HFP03 | extremely low heat fl
uxes | -30 to +70 | N/A | 500 | 2 000 | N | | SBG01-2
0 | low level fire and fla
me | water-cool
ed* | N/A | 0.30 | 20 000 | N | | SBG01-1
00 | fire and flame | water-cool
ed* | N/A | 0.15 | 100 000 | N | | GG01-25
0 | high intensity flame | water-cool
ed* | К | 0.024 | 250 000 | Y (sapphire window) | | GG01-10
00 | concentrated solar,
plasma, rockets,
hypersonic wind | water-cool
ed* | К | 0.008 | 1 000 00 | N | Table 2 Examples of different electronics compatible with Hukseflux heat flux sensors. This brochure shows a summary only and does not show all relevant electronics specifications. Contact Hukseflux for a final check of | BRAND | MODEL | ОИТРИТ | INPUT | PRICE L
EVEL | VOLTAGE
MEASURE
MENT ACC
URACY* | COMMENTS | |------------------------------|--|--|---------------------------|--------------------------|--|--| | [name] | [model name] | [signal / protoc ol] | [# of chann
els, type] | [approxim ate EUR/ unit] | [x 10–6 V] | [comments] | | Campbell
Scientific | CR1000X | Ethernet Modb
us stored data
via USB | 8 (HF + T) | 2500 | 0.2 | Optional outdoor and ba
ttery powered use. Spec
s valid from – 40 to + 70
°C. Channel extension
with multiplexer | | Keysight | DAQ970A + multiplexer | Digital to PC,
USB, LAN or G
PIB | 14 (HF + T | 2000 | 0.1 | Laboratory use, channel extension with multiplex er | | Hioki | LR8515 | Bluetooth to P | 2 (1 x HF, 1
x T) | 500 | 10 | 2 channel standalone us
e battery powered | | Hioki | LR8432 | LCD screen, m emory card | 10 (HF + T
) | 1200 | 0.1 | Laboratory use, immedi ate display | | Hioki | LR8450
LR8450-1 | LCD screen, m
emory card | 120 (HF +
T) | 2100, ma
in unit | 0.1 | Modular logger, extensio
n possible with various u
nits (version -01 with wir
eless LAN) | | PR Electr
onics | 5331A
transmitter | 4-20 mA | 1 (HF or T) | 200 | 10 | 1 channel, programmabl
e, industrial use, also AT
EX | | PR Electr
onics | 6331B
transmitter | 2 x (4-20 mA) | 2 (HF or T) | 500 | 10 | 2 channel, programmabl
e, industrial use, also AT
EX | | data Take | DT80 | Ethernet
Modbus | 5 (HF or T) | 2000 | 0.2 | Industrial use, channel e xtension with multiplexer | | National I
nstrument
s | PXI series <u>40</u> <u>65</u> , <u>4070</u> | USB version available | 1 (HF or T) | 1500 | 10 | Eurocard model, LabVIE
W compatible | | Fluke | 287 | LCD screen, m
emory card, U
SB and
bluetooth ** | 1 (HF) | 1000 | 12 | Can handle type K ther
mocouple, not type T fro
m FHF, optional Infra-Re
d temperature sensor | - * For comparing purpose only. Calculation is a rough approximation order of magnitude. - ** accessories required. #### **CUSTOMER SUPPORT** Copyright by Hukseflux. Version 2302. Page 4/4. For Hukseflux Thermal Sensors go to www.hukseflux.com or e-mail us: info@hukseflux.com ## **Documents / Resources** Heat flux Data Logger Selection Guide [pdf] Owner's Manual Data Logger Selection Guide # References Hukseflux | #1 in solar radiation & heat flux measurement Manuals+,