
Skip to content

Manuals+

User Manuals Simplified.

HALCON 21.11 Progress
User Guide

Home » HALCON » HALCON 21.11 Progress User
Guide

Contents hide
1 HALCON 21.11 Progress

2 About This Manual
3 Installing HALCON
4 HALCON Architecture
4.1 Operators
4.2 Extension Packages
4.3 Language Interfaces
4.4 Image Acquisition Interfaces
4.5 I/O Interfaces
5 How to Develop Applications
5.1 HDevelop
5.2 Example Program
6 How to Continue
7 Documents / Resources
7.1 References
8 Related Posts

HALCON 21.11 Progress

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/halcon

A quick access to the functionality of HALCON, Version 21.11.0.0
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission
of the publisher.

Copyright © 2003-2021 by MVTec Software GmbH, München, Germany
Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US
8,379,014, US 8,830,229. Further patents pending.
Microsoft, Windows, Windows Server 2008/2012/2012 R2/2016, Windows 7/8/8.1/10, Microsoft .NET, Visual C++,
and Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.
Linux is a trademark of Linus Torvalds.
macOS and OpenCL are trademarks of Apple Inc.
NVIDIA, CUDA, cuBLAS, and cuDNN are either trademarks or registered trademarks of NVIDIA Corporation.
OpenGL is a trademark of Silicon Graphics, Inc.
All other nationally and internationally recognized trademarks and tradenames are hereby recognized.
More information about HALCON can be found at: http://www.halcon.com/

About This Manual

This manual introduces you to HALCON. It is intended for beginners without prior knowledge of HALCON.
This manual can also be used as a reference guide to several other HALCON manuals, as it interconnects them
along the following topics:

1. Installing HALCON (page 7)
This chapter introduces the MVTec Software Manager (SOM).

2. HALCON Architecture (page 9)
Some theoretical background, needed to understand what HALCON is and how it works.

3. How to Develop Applications (page 15)
This chapter explains three basic approaches for developing with HALCON and guides you through a first
programming example.

4. How to Continue (page 19)
This chapter refers to additional sources of information.

Installing HALCON

http://www.halcon.com

For Linux und Windows users, we recommend downloading and installing HALCON via the MVTec Software
Manager (SOM). SOM is an installation manager for software packages. It provides access to a remote cata-log of
products, and supports, among other features, downloading and installation of packages. A step by step introduction
on how to install HALCON via SOM can be found in the Installation Guide.

HALCON Architecture

HALCON’s basic architecture is depicted in figure 2.1. The main part is the image processing library, which consists
of more than 2000 operators. You can also develop your own operators in the form of so-called ex-tension packages
(page 11). You use the operators in your application via language interfaces (page 11) like HALCON/C++ or
HALCON/Python. These are libraries which allow a direct use of the operators in the typical programming style of the
different programming languages.

Figure 2.1: Basic architecture of HALCON.

For the access of image acquisition devices, HALCON provides image acquisition interfaces (page 13) which allow
you to use quite different acquisition devices in a common way. The libraries containing the device-specific
implementations are loaded dynamically when needed. In the same fashion, I/O devices are accessed through
device-specific I/O interfaces (page 13).

Operators

Whenever any kind of functionality is used from the HALCON library, it is done via an operator. Most of them
comprise multiple methods, which are selected via parameters. A full list of all operators can be found in the
HALCON Operator Reference available in HDevelop, .NET, Python, C++, and C syntax. Important features of
operators are:

There is no hierarchy among operators. From the software architecture point of view, all operators are on the
same level.
Of course, there are logical groups of operators. For example, this can be seen by the classes offered for C++
and .NET, where operators processing the same data type are member functions of the corresponding classes.
The design of the operators follows the rules of the open architecture. Therefore, you can create your own op-
erators and thus extend HALCON (see section 2.2). The Extension Package Programmer’s Manual contains
detailed information about extending the operator library.
Many operators can make transparent use of automatic parallelization, which allows an easy way of speeding
up the program when using large images on a multi-processor or multi-core computer. Detailed information on

parallel programming can be found in the technical note Parallel Programming, as well as in the Program-mer’s
Guide.
Operators have standardized rules for ordering input and output parameters: input iconic, output iconic, input
control, and output control (see section 2.1.1). Not all of the groups might be needed for a given operator. In
general, input parameters of operators are not modified, which results in a clear and simple semantics. There
are only a few exceptions to this design, e.g., set_grayval, overpaint_gray, and overpaint_region.

Parameters and Data Structures
HALCON has two basic types of parameters: iconic data and control data. Images, regions, and XLDs (eXtented Line
Description) belong to the iconic data.

Images consist mainly of channels, i.e., matrices containing pixel values. All channels of an image have the same
size. For detailed information about pixels and channels, please read the chapter “Image” of the HALCON Operator
Reference.
For each image, the so-called region of interest (ROI) specifies which part of the image is processed. The ROI can
be defined very flexibly (from a simple rectangle to a set of unconnected pixels). For details about ROI handling see
the Solution Guide I, Region Of Interest on page 27.

Regions are a set of pixels. The pixels of a region do not need to be connected. Even an arbitrary collection of pixels
can be handled as a single region. With the operator connection a region can be split into its connected regions, i.e.,
components consisting of connected pixels.

XLDs comprise all contour and polygon based data. Subpixel-accurate operators like edges_sub_pix return the
contours as XLD data. A contour is a sequence of 2D control points, which are connected by lines. Typically, the
distance between control points is about one pixel. XLD objects contain, besides the control points, so-called local
and global attributes. Typical examples for these are, e.g., the edge amplitude of a control point or the regression
parameters of a contour segment. Besides the extraction of XLD objects, HALCON supports further processing.
Examples for this are the selection of contours based on given feature ranges for the segmentation of a contour into
lines, arcs, polygons or parallels.

The control data includes handles and basic data types like integer, real, string.

Handles are references to complex data structures, e.g., a connection to an image acquisition interface or a model
for the shape-based matching. For efficiency and data security reasons, not the entire structure but only the handle is
passed between the operators. Handles are magic values that must not be changed and can differ from execution to
execution and version to version. They are automatically cleared once all references are overwritten. Examples
where handles are used are graphics windows, files, sockets, image acquisition interfaces, OCR, OCV, measuring,
and matching.

Extension Packages

HALCON may be extended by new operators. Although HALCON already contains an abundant set of operators for
various tasks, you may wish to implement new operators, e.g., to access a special hardware or to implement an
alternative algorithm. To do so, HALCON provides the Extension Package Interface, which allows the integration of
new operators (implemented in C) in the form of so-called extension packages. The Extension Package Interface
contains several predefined routines and macros for the easy handling of image data and memory objects in C. Once
a new operator has been successfully integrated, it can be used like any other HALCON operator. The Extension
Package Programmer’s Manual contains detailed information about extending the operator library.

Language Interfaces

As shown in figure 2.1 on page 9, HALCON provides so-called language interfaces. These are native language
bindings, that enable you to call operators and use HALCON data types directly from within your application, be it
Python, C, C++, or .NET.
To start the development, we recommend to first check one of the ready-to-run example programs. Here, you can
see how the project must be set up and how operators and types are used.
For each language interface, the names of types, classes, the naming conventions of operators, etc. may differ to be
compliant with the typical rules that apply for the selected language. The operator signatures for the supported
programming languages are documented in the HALCON Operator Reference.

HALCON/Python

The Python interface stands out for its simplicity and its ability for rapid prototyping. HALCON operators are called
directly as standalone functions, after importing the HALCON/Python module. Note also that operator parameters in
HALCON/Python are split into function parameters (inputs) and return values (output).

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
img = ha.read_image(‘pcb’)
region = ha.threshold(img, 0, 122)
num_regions = ha.count_obj(ha.connection(region))
print(f’Number of Regions: {num_regions}’)

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 4, A First Example.

HALCON/C
The C interface is the simplest interface supported by HALCON. Each operator is represented by either one or two
global functions where the operator name and the parameter sequence are identical to the HDevelop language.

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
Hobject img;
read_image(&img, “pcb”);
Hobject region;
threshold(img, ®ion, 0, 122);
Hobject connected_regions;
connection(region, &connected_regions);
Hlong num_regions = 0;
count_obj(connected_regions, &num_regions);
printf(“Number of Regions: %” PRIdPTR “\n”, num_regions);

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 5, A First Example.

HALCON/C++
The C++ interface is much more sophisticated than the C interface. Here, the advantages of C++ and object-oriented
programming are used, i.e., automatic type conversion, construction and destruction, or grouping functions together
with their data into classes. Like in the C interface, global functions for each HALCON operator are provided for a
procedural style of programming.

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
HImage img{“pcb”};
HRegion region = img.Threshold(0, 122);
Hlong numRegions = region.Connection().CountObj();
std::cout << “Number of Regions: ” << numRegions << ‘\n’;

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 2, A First Example.

HALCON/.NET
C# and Visual Basic .NET use HALCON via the .NET interface.
Analogously to C++, two styles of programming are offered: procedural and object-oriented. For the procedural style,
the class HOperatorSet provides all HALCON operators, where HObject is used to handle iconic data and HTuple is
used for control data. For the object-oriented style, classes like HDataCode2d, HMeasure, or HShapeModel are
provided for the central functionality. In addition, classes for iconic data, e.g., HImage or HRegion, are available.

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
HImage img = new HImage(“pcb”);
HRegion region = img.Threshold(0d, 122d);
int numRegions = region.Connection().CountObj();
Console.WriteLine(“Number of Regions: ” + numRegions);

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 3, A First Example.

Image Acquisition Interfaces

HALCON’s image acquisition interfaces form the bridge between software provided by the manufacturer of the image
acquisition device and HALCON. They form a common, generic interface that requires a small set of operators only.
Please refer to the Solution Guide II-A for detailed information about this topic.
Currently, HALCON provides interfaces for more than 50 frame grabbers and hundreds of industrial cameras in the
form of dynamically loadable libraries (Windows: DLLs; Unix-like systems: shared libraries). Library names start with
the prefix hAcq; the libraries ending with the suffix xl are used by HALCON XL.
The most widely used interfaces based on industry standards are already installed together with the HALCON li-
braries. Additional interfaces, as well as the latest versions of already included interfaces can be downloaded under
https://www.mvtec.com/products/interfaces. The HALCON image acquisition interfaces may change more
frequently than the HALCON library itself. One reason for this is that MVTec continuously develops new interfaces;
furthermore, if the software provided by the manufacturers of image acquisition devices changes, e.g., if new features
are integrated, the corresponding HALCON interfaces will be adapted. Please also refer to the Image Acquisition
Interface Reference for a full list of supported image acquisition interfaces.
Once you successfully installed your image acquisition device, all you need to do to access it from HALCON is to call
the operator open_framegrabber, specifying the name of the image acquisition interface and some additional
information, e.g., regarding the connected camera. Then, images can be grabbed by calling the operator grab_image
(or grab_image_async).

I/O Interfaces

HALCON provides interfaces for several I/O devices to enable data acquisition. These interfaces are available as
dynamically loadable libraries (Windows: DLLs; Unix-like systems: shared libraries). Library names start with the
prefix hio; the libraries ending with the suffix xl are used by HALCON XL.
The HALCON I/O device interfaces provide unified access to different I/O devices using a small set of operators.
After you have installed your I/O device, a connection is established using the operator open_io_device, speci-fying
the name of the I/O device interface and, optionally, some device-specific parameters. Once the connection is
established, a transmission channel can be opened by calling open_io_channel. To read and write values on this
channel, use the operators read_io_channel and write_io_channel, respectively.
Please note that the HALCON I/O device interfaces may change more frequently than the HALCON library itself. You
can find the latest information together with downloadable interfaces (including documentation) under
https://www.mvtec.com/products/interfaces. Please also refer to the I/O Device Interface Reference for a full list
of supported I/O device interfaces.

How to Develop Applications

We recommend that you start with rapid prototyping in HDevelop, the interactive development environment for the
HALCON machine vision library. You can use HDevelop to find the optimal operators and parameters to solve your
image analysis task. After developing an HDevelop program according to the given requirements, it has to be
translated into its final environment. For this, you can choose between the following three approaches, depending on
your preferences:

Start from Scratch: Writing your program from scratch means to translate your HDevelop code into the target
programming language (C++, Python…) manually. As mentioned before, the naming conventions of operators,
the names of classes, etc., may differ between programming languages. Have a look at the HALCON Operator
Reference to get the HALCON operator signatures for each supported programming language. For information
on how to create applications in your desired target language, please read the Programmer’s Guide.
Export HDevelop Code: Translate your HDevelop code into the target programming language automatically
using HDevelop’s code export.
Export Library Project: HDevelop’s library export generates a ready-to-use project folder, including wrap-per
code in the target language and the CMake file to build the project. HDevelop’s library export uses the
HDevEngine, a library that acts as an interpreter. HDevEngine lets you directly execute HDevelop programs or
procedures from an application written in C++ or any language that can integrate .NET objects. Thus, you do
not have to recompile the entire application when making changes to the HDevelop code.
Of course, you can use the HDevEngine without using HDevelop’s library export function. How to use
HDevEngine is described in detail in the Programmer’s Guide, Part 6 (Using HDevEngine).

HDevelop

https://www.mvtec.com/products/interfaces
https://www.mvtec.com/products/interfaces

Let’s take a first look at HDevelop. Figure 3.1 shows HDevelop’s user interface, after a program has been loaded
and partly been executed.
By default, these windows are visible, which are also essential for developing with HDevelop:

1. Graphics Window Displays (intermediate) results, namely iconic data (page 10) like images, regions, and XLDs.
2. Program Window This is where you type your program code, using operators (page 10) to access HALCON’s

image processing methods.
3. Variable Window Shows all variables, namely iconic variables and control variables. Iconic variables contain

iconic data (page 10) and control variables contain control data (page 10).

Detailed information about HDevelop can be found in the HDevelop User’s Guide. Our tutorial videos also offer a
good introduction to HDevelop:

HDevelop Tutorial 01: GUI and Navigation
HDevelop Tutorial 02: Variables
HDevelop Tutorial 03: Visualization

Figure 3.1: HDevelop’s User Interface.

Example Program

Now that you have been introduced to HDevelop’s User Interface and the basic concepts of HALCON (page 9), let’s
develop a C++ application using the Library Export Approach.
In addition to the following step-by-step instructions, we recommend that you watch our tutorial videos: Integrate
HDevelop code into a C++ application using the Library Project Export
Integrate HDevelop code into a C# application using the Library Project Export
The videos demonstrate the library export and provide more background information about the topic.

Create Prototype in HDevelop
The task of the following example is to read an image and count the number of connected regions it it.

1. Open HDevelop and enter the following code into the Program Window:
read_image (Image, ‘pcb’)
threshold (Image, Region, 0, 122)
connection (Region, ConnectedRegions)
count_obj (ConnectedRegions, Number)

2. Test your program by clicking Run in the toolbar or pressing F5 .

To easily integrate this HDevelop code into an actual application, we encapsulate the machine vision part in a local
procedure.

1. Highlight the following code lines: threshold (Image, Region, 0, 122) connection (Region, ConnectedRegions)
count_obj (ConnectedRegions, Number)

2. Right-click to open the context menu.
3. Choose Create New Procedure.
4. Name it count_regions.
5. Select Parameters and change Selection Scheme to First In, Last Out.
6. Confirm with OK.
7. Save your HDevelop program as hdev_count_regions.hdev

Prepare Visual Studio Project
In this example, we will use Visual Studio 2019. 1

1. Create an empty C++ Windows Console project and name it vs_count_regions. Please activate the option
Place solution and project in the same directory. 2

2. Add a C++ source file (Menu Project Add New Item… C++ File) and name it vs_count_regions.cpp.
3. Choose the solution platform x64 from the drop down menu in the toolbar.
4. Open your project properties (Menu Project vs_count_regions Properties…) and make the following settings:

Select C/C++ General and add the following Additional Include
Directories:$(HALCONROOT)\include;$(HALCONROOT)\include\halconcpp;
Select Linker General and add the following Additional Library
Directory:$(HALCONROOT)\lib\$(HALCONARCH);
Select Linker Input and add the following Additional Dependencies: halconcpp.lib;hdevenginecpp.lib;

Export Library Project
Next, we export our HDevelop program hdev_count_regions.hdev into our Visual Studio project folder.

1. Open the previously created HDevelop program hdev_count_regions.hdev.
2. Open File Export Library Project…
3. Make the following settings:

Input file: Current Program
Target Language: C++
Project Name: hdev_count_regions
Project Location: Choose the location of our Visual Studio project vs_count_regions.
Namespace: hdev_count_regions

4. Confirm with Export.

Now, your Visual Studio project folder vs_count_regions should contain at least the following data:

vs_count_regions.cpp (Source File)
vs_count_regions.sln (Solution)
hdev_count_regions (Folder from HDevelop Export)

cmake
res_ hdev_ count_ regions
hdev _ count_ regions. hdev

 source
hdev_count_regions.cpp
hdev_count_regions.h
CMakeLists.txt

Integrate Library Project into Visual Studio
Lastly, we have to integrate the HDevelop program into our Visual Studio Project.

1. Open the Visual Studio Project.
2. Open Project Add Existing Item… and choose the C++ file hdev_count_regions.cpp and the header file

hdev_count_regions.h, created by HDevelop’s Library Export. (The files are located in the folder
hdev_count_regions source.)

3. Enter the following code into vs_count_regions.cpp:
#include <iostream>

#include “HalconCpp.h”
#include “hdev_count_regions/source/hdev_count_regions.h”
int main()
{
HalconCpp::HImage Image(“pcb”);
hdev_count_regions::SetResourcePath(“hdev_count_regions/res_hdev_count_regions”);
HalconCpp::HTuple Number{};
hdev_count_regions::count_regions(Image, &Number);
std::cout << “Number of Regions: ” << Number.L() << ‘\n’;
}

4. Execute the program. → A console opens, showing the result ’Number of regions: 43’.

How to Continue

To dive deeper into HALCON, we offer further documentation and support.

HDevelop Example Programs
HALCON provides an extensive set of example programs, not only for HDevelop but also for different
programming languages. These examples can be found in the directory denoted by the environment variable %
HALCONEXAMPLES% or, if the variable is not set, in the subdirectory examples of the folder into which you
have installed HALCON.
To open an HDevelop example program, select the menu File Browse HDevelop Example Programs…. For
beginners, we recommend to select an example from the category Application area.
Services and Support
Our website https://www.mvtec.com/services-support offers a variety of support, for example tutorial videos,
information about workshops and trainings, the developers’ corner providing tips and tricks, and many more.
HALCON Documentation
The documentation provides a wealth of information, from beginner topics to expert knowledge. For example,
our Solution Guides describe machine vision methods and how to apply them in HDevelop. A good starting
point is Solution Guide I which introduces you to the main machine vision methods.
An overview of all manuals with a short description can be found on the documentation’s entry page.

Documents / Resources

HALCON 21.11 Progress [pdf] User Guide
21.11 Progress, 21.11, Progress

References

 HALCON - the powerful Machine Vision Software: MVTec Software
 MVTec Interfaces: MVTec Software
 MVTec Interfaces: MVTec Software
 Services & Support: MVTec Software
 Integrate HDevelop code into a C++ application using the Library Project Export
 HDevelop Tutorial 01: GUI and Navigation: MVTec Software
 HDevelop Tutorial 02: Variables – MVTec HALCON
 HDevelop Tutorial 03: Visualization – MVTec HALCON

Manuals+,

home
privacy

https://www.mvtec.com
https://manuals.plus/m/0936c9cb23d4b398147fc238e70323e7b6c10512ee4cc2bd66452ec346c22675
https://manuals.plus/m/0936c9cb23d4b398147fc238e70323e7b6c10512ee4cc2bd66452ec346c22675_optim.pdf
http://www.halcon.com/
http://www.mvtec.com/products/interfaces
https://www.mvtec.com/products/interfaces
https://www.mvtec.com/services-support
https://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-library-project-export
https://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-tutorial-01-gui-and-navigation
https://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-tutorial-02-variables-mvtec-halcon
https://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-tutorial-03-visualization-mvtec-halcon
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/privacy-policy

	HALCON 21.11 Progress User Guide
	HALCON 21.11 Progress
	About This Manual
	Installing HALCON
	HALCON Architecture
	Operators
	Extension Packages
	Language Interfaces
	Image Acquisition Interfaces
	I/O Interfaces

	How to Develop Applications
	HDevelop
	Example Program

	How to Continue
	Documents / Resources
	References

