hager TYFS120 IP Gateway User Guide Home » hager TYFS120 IP Gateway User Guide #### **Contents** - 1 hager TYFS120 IP Gateway - 2 Application software - 3 Application - **4 KNX Security** - 4.1 KNX IP Security for the interface **function** - 4.2 KNX Data Security for the device - **5 Installation and Connection** - 5.1 KNX programming mode - 5.2 Status display - **6 Installation and Connection** - 7 Factory default settings - 8 ETS database - 9 ETS parameter dialogue - 9.1 General settings - 9.2 Prog. mode on device front - 9.3 Manual operation on device - 10 Programming - 10.1 Via the KNX bus - 10.2 Via KNXnet/IP Tunneling - 10.3 Via direct IP connection - 11 Interface settings within ETS - 12 Remote access - 12.1 Remote access with NAT - 12.2 Remote access with VPN - 12.3 Remote access and KNX secure - 13 Open Source Licenses - 14 Documents / Resources - 14.1 References - 15 Related Posts ## hager TYFS120 IP Gateway ## **Application software** | | Order
number | Product designation | Application software ref. | TP device RF devices ((| |--|-----------------|------------------------------|---------------------------|-------------------------| | TYPEST 200 TO SERVE AND THE SE | TYFS120 | KNX / IP secure
Interface | STYFS120 | | **Electrical** / **Mechanical characteristics:** see product information The KNX IP secure interface serves as a universal interface for PC or Laptop to the KNX bus. The KNX bus can be accessed from any point on the LAN. The KNX IP secure interface can be used as a programming interface for ETS®. For access via KNXnet/IP Tunneling max. 8 simultaneous connections are possible. The device supports KNX Security. The option can be activated in the ETS. As a secure interface, the device prevents unauthorised access to the system. The IP address can be assigned via DHCP or via the ETS configuration. The device operates according to the KNXnet/IP specification using core, device management and tunneling. Power is supplied via the KNX bus. ## **KNX Security** The KNX standard was extended by KNX Security to protect KNX installations from unauthorized access. KNX Security reliably prevents the monitoring of communication as well as the manipulation of the system. The specification for KNX Security distinguishes between KNX IP Security and KNX Data Security. KNX IP Security protects the communication over IP while on KNX TP the communication remains unencrypted. Thus KNX IP Security can also be used in existing KNX systems and with non-secure KNX TP devices. KNX Data Security describes the encryption at telegram level. This means that the telegrams on the twisted pair bus are also encrypted. ## KNX IP Security for the interface function When using a KNX IP interface to the bus, access to the installation is possible without security for all devices that have access to the IP network. With KNX Security a password is required. A secure connection is already established for the transfer of the password. All communication via IP is encrypted and secured. In both modes, the interface forwards both encrypted and unencrypted KNX telegrams. The security properties are checked by the respective receiver or tool. #### KNX Data Security for the device The KNX IP secure interface also supports KNX Data Security to protect the device from unauthorized access from the KNX bus. If the KNX IP interface is programmed via the KNX bus, this is done with encrypted telegrams. Encrypted telegrams are longer than the previously used unencrypted ones. For secure programming via the bus, it is therefore necessary that the interface used (e.g. USB) and any intermediate line couplers support the so-called KNX long frames. ## **Installation and Connection** The KNX IP secure interface is designed for installation on a DIN rail with a width of 1 unit (18mm). It features the following controls and displays: - Programming LED - 2. Mode LED - 3. Button for Programming Mode - 4. RJ45 network connection - 5. KNX Bus connection - 6. Programming button - 7. KNX Status LED - 8. Ethernet/IP Status LED The KNX IP secure interface is powered by the KNX bus. An external power supply is not necessary. The device is not working without KNX bus power. ## **KNX** programming mode The KNX programming mode is activated/deactivated either by pressing the flushed KNX programming button or by simultaneously pressing the buttons . ## Status display The KNX LED lights up green if the device is successfully powered by the KNX bus. The LED indicates telegrams on the KNX bus by flickering. Communication failures (e.g. repetitions of telegram or telegram fragments) are indicated by a short change of the LED color to red. | LED Status ⑦ | Meaning | |--------------------|---------------------------------------| | LED lights green | KNX bus voltage available. | | LED flickers green | Telegram traffic on the KNX bus | | LED shortly red | Communication failures on the KNX bus | Table 1 - Overview of the different indications of the KNX LED The IP LED lights up when an Ethernet link is active. This LED is green if the device has valid IP settings (IP address, Sub net and Gateway). With invalid or nonexistent IP settings the LED is red. This is also the case if e.g. the device has not yet received the IP settings by a DHCP server. The LED indicates IP telegrams by flickering. ## **Installation and Connection** | LED Status ® | Meaning | |--------------------|--| | LED lights green | The device has an active Ethernet link and valid IP settings. | | LED lights red | The device has an active Ethernet link and invalid IP settings or not yet received the IP settings by a DHCP server. | | LED flickers green | IP telegram traffic | Table 2 - Overview of the different indications of the IP LED The Mode LED can visualize the status of each KNXnet/IP tunneling connection. With the buttons Conn Up/Dn numbers up and Conn Dn (1x...8x) of the Mode LED you can chose each single connection. Conn Up counts the connection down. The actually selected connection number is indicated by flashing. An available KNXnet/IP Tunneling connection is indicated by a green LED and a used tunneling connection is indicated by an orange LED Via the Escape function (Esc) this indication can be ended by simultaneously pressing the buttons Conn Up/Dn. If neither programming mode nor manual operation are active the Mode LED errors. can visualize configuration | LED Status ② | Meaning | | |-------------------------|--|--| | LED lights green | Device is working in standard operation mode. | | | LED lights red | Programming mode is active | | | LED flashes green 1x8x | Programming mode is not active. Manual operation is active. The selected tunnel (1-8) is not used and free | | | LED flashes orange 1x8x | Programming mode is not active. Manual operation is active. The selected tunnel (1-8) is used | | | LED flashes red | Programming mode is not active. Manual operation is not active. The device is not properly loaded e.g. after an interrupted download. | | Table 3 - Overview of the different indications of the Mode LED ## **Factory default settings** ## Factory default configuration: - Individual device address: - 15.15.255 - Number of configured KNXnet/IP tunneling configuration: Individual address of tunneling configuration: - 0 1 - IP address assignment: - 15.15.240 - Initial key (FDSK): - DHCP - · Security Modus: - active not active ## Reset to factory device settings (Master-Reset) - It is possible to reset the device to its factory settings: - Separate the KNX Bus connector from device - Press the KNX programming button and keep it pressed down - · Reconnect the KNX Bus connector of device - Keep the KNX programming button pressed for at least another 6 seconds - A short flashing of all LEDs () visualizes the successful reset of the device to factory default settings. #### **ETS** database The ETS database (ETS 5.7 or higher) can be downloaded from the product website of the KNX IP secure interface or via the KNX online catalogue. If you are not interested in the KNX IP Secure feature, you still have the possibility to use a non-secure version of the application to configure your device. If you use the secure version of the application, then the following steps have to be proceeded. If the first product is inserted into a project with KNX Security, the ETS prompts you to enter a project password. Figure 1 – Set Project Password This password protects the ETS project from unauthorized access. This password is not a key that is used for KNX communication. The entry of the password can be bypassed with "Cancel", but this is not recommended for security reasons. ETS requires a device certificate for each device with KNX Security that is created in the ETS. This certificate contains the serial number of the device as well as an intangible key (FDSK = Factory Default Setup Key). Figure 2 – Adding Device Certificate The certificate is printed as text on the device. It can also be conveniently scanned from the printed QR code via a webcam. The list of all device certificates can be managed in the ETS Overview – Projects – Security window. This initial key is required to safely put a device into operation from the start. Even if the ETS download is recorded by a third party, the third party has no access to the secured devices afterwards. During the first secure download, the initial key is replaced by the ETS with a new key that is generated individually for each device. This prevents persons or devices who may know the initial key from accessing the device. The initial key is only reactivated after a master reset. The serial number in the certificate enables the ETS to assign the correct key to a device during a download. In the ETS, some settings are displayed in addition to the parameter dialog in the properties dialog (at the edge of the screen). The IP settings can be made here. The additional addresses for the interface connections are displayed in the topology view. Figure 3 - Devices Each individual KNX address can be changed by clicking on the list entry and typing in the desired address into the "Individual Address" text-field. If the text-field frame switches to color red after entering the address, the address is already taken within your ETS project. Each individual KNX address can be changed by clicking on the list entry and typing in the desired address into the "Individual Address" text-field. If the text-field frame switches to color red after entering the address, the address is already taken within your ETS project. Figure 4 - Properties If secure tunneling is activated, a unique password will be created automatically for each tunnel. These passwords can be displayed under the 'Settings' overview, when a tunnel is selected. Figure 5 – Properties Within the "IP" overview the IP network specific options of the KNX IP secure interface can be changed. By changing "obtain an IP address automatically (via DHCP)" to "Use a static IP address" (static IP address) the IP address, subnet mask, and default gateway can be set freely. All changes in the properties menu become effective only after a successful application download. Figure 6 - Properties ## IP address Here the IP address of the KNX IP secure interface can be entered. This is used to address the device via the IP network (LAN). The IP addressing should be coordinated with the administrator of the network. #### · Subnet mask • Enter the subnet mask here. The device uses the values entered in this mask to determine whether there is a communication partner in the local network. If there is no partner in the local network, the device will not send the telegrams directly to the partner but to the gateway that routes the telegram. ## · Default gateway - Enter the IP address of the gateway here, e.g. the DSL router of the installation. - Example of assigning IP addresses: - · A PC is used to access the KNX IP secure interface : - IP address of the PC:192.168.1.30 - Subnet of the PC:255.255.255.0 The KNX IP secure interface is located in the same local LAN, i.e. it uses the same subnet. The subnet constrains the IP addresses that can be assigned. In this example, the IP address of the IP interface must be 192.168.1.xx, where xx can be a number from 1 to 254 (with the exception of 30, which is already in use). It must be ensured that no numbers are assigned twice. IP address of the IP Interface:192.168.1.31 Subnet of the IP Interface:255.255.255.0 ## ETS parameter dialogue The following parameters can be set using the ETS. ## **General settings** Figure 7 – General settings #### Prog. mode on device front In addition to the normal programming button the device allows activating the programming mode on the device front without opening the switchboard cover. The programming mode can be activated and deactivated via pressing simultaneously both buttons . This feature can be enabled and disabled via the parameter "Prog. mode on device front". The recessed programming button (next to the Programming LED) is always enabled and not influenced by this parameter. #### Manual operation on device The manual operation of the KNX IP secure interface only contains the status display. This parameter sets the duration of the manual mode. Upon completion the normal display mode is restored. ## **Programming** ## The KNX IP secure interface can be programmed in different ways via the ETS: ## Via the KNX bus The device only needs to be connected to the KNX bus. The ETS requires an additional interface (for example, USB) to have access to the bus. Via this way both the individual address and the entire application including IP configuration can be programmed. Programming via the bus is recommended if no IP connection can be established. ## Via KNXnet/IP Tunneling No additional interface is required. Programming via KNXnet/IP Tunneling is possible if the device already has a valid IP configuration (e.g. via DHCP). In this case the device is displayed in the interface configuration of the ETS and must be selected. The download is executed via the ETS project as with many other devices. #### Via direct IP connection Figure 8 – Connection Options While KNXnet/IP tunneling is limited to the speed of KNX TP, the device can be loaded at high speed via a direct IP connection. The direct IP connection is possible if the device already has a valid IP configuration as well as a physical address. To do this, select "Use direct IP connection if possible" in the ETS menu under "Bus – Connections – Options". The download then takes place directly into the device and is not visible in the ETS group monitor. Due to the significantly shorter transmission times, it is recommended that downloads be carried out via IP. ## Interface settings within ETS - The KNX IP secure interface serves as a programming interface. The ETS can use this function to establish a connection via IP to the respective TP line. - Within the ETS, KNX interfaces can be selected and set up via the ETS menu "Bus Interfaces". - The ETS can access configured KNX IP Interfaces even without a database entry. If the setup of the KNX IP Interface does not comply with the conditions of the KNX installation it must be configured via an ETS project. See the ETS database section for more information. - If security mode is activated in the KNX IP Interface, a password is required to establish a connection. - As factory default the assignment of the IP address is set to "automatically via DHCP" and thus no further settings are necessary. To use this feature a DHCP server on the LAN must exist (e.g. many DSL routers have an integrated DHCP server). - If the KNX IP interface has been connected to the LAN and has a valid IP address, it should appear automatically in the menu item "Bus" under "Discovered interfaces". - By clicking on the discovered interface it is selected as the current interface. On the right side of the ETS window all specific information and options of the connection appear. - The indicated device name and the "Host Individual Address" (individual address of the device) can only be changed within your ETS project then. - Like all programmable KNX devices the KNX IP secure interface has an individual address which can be used to access the device. This is used, for example, of the ETS when downloading to the KNX IP Interface via the hus - For the interface function the device contains additional individual addresses that can be set in the ETS. When a client (e.g. ETS) sends via the KNX IP Interface telegrams to the bus, they contain a sender address as one from the additional - addresses. Each address is associated with a connection. Thus response telegrams can be clearly transmitted to the respective client. - The additional individual addresses must be selected from the address range of the bus line in which the interface is installed and may not be used by another device. ## Example: | ************************************** | | | |--|----------|-------------------------------| | Device address | 1.1.10 | (address within ETS topology) | | Connection 1 | 11.1.240 | (1. additional address) | | Connection 2 | 11.1.241 | (2. additional address) | | Connection 3 | 11.1.242 | (3. additional address) | | Connection 4 | 11.1.243 | (4. additional address) | | Connection 5 | 11.1.244 | (5. additional address) | | Connection 6 | 11.1.245 | (6. additional address) | | Connection 7 | 11.1.246 | (7. additional address) | | Connection 8 | 11.1.247 | (8. additional address) | | | | | Section "Individual Address" enables you to select the individual KNX address of the currently used KNXnet/IP Tunneling connection. Figure 9 - IP Tunneling The individual KNX device address and the individual addresses for additional tunneling connections can be changed within the ETS project after the device has been added to the project. #### Remote access #### Remote access with NAT NAT (Network Address Translation) is a method used to translate IP addresses. It is primarily used in routers (e.g. DSL/Fiber routers). #### WARNING Please note that remote access via NAT, without further safety measures, poses significant dangers. Port forwarding provides universal access to your local IP network and your KNX system. Any Internet user can discover the open port on your static public IP address and can, for example, access your KNX network via the ETS software. We strongly advise using NAT only temporarily for testing or diagnostic purposes. After that, close the port again to prevent abuse. If remote access is realized through NAT, we strongly advise you not to specify the default port of 3671 towards the Internet. Port 3671 is the official port for efcp – eFieldControl(EIBnet) registered by KNX Association. This port can be easily determined by unauthorized persons. Please use a port in the non-reserved range between port 50000 and port 60000. Permanent remote access should be established only when protected! We recommend remote access through VPN (Virtual Private Network). The VPN feature is already integrated into most DSL routers. #### Remote access with VPN A VPN is an extension of private networks. It can be used to enable remote access (site-to-end) and link private networks (site-to-site) via the Internet. #### · Site-to-end A site-to-end VPN can be used to establish access to an internal network. For example, employees in the field can use it to dial into their company network. #### · Site-to-site A site-to-site VPN can be used to link private networks. For example, a site-to-site VPN can link two remote company networks. It is not possible for ETS to identify the interface automatically via the VPN connection. Within the 'Server' text box you have to fill in the IP-address of the KNX IP Interface. The 'Connect using NAT mode' checkbox has to be activated. Despite the fact that the connection is not established in NAT mode, this option enables certain initialisations which are necessary for a KNXnet/IP connection. #### Remote access and KNX secure Due to the different remote access possibilities and the possibility of KNX secure or KNX unsecure the following constellations are possible. | | NAT | VPN | |--------------|-------------------------|--------------------| | KNX unsecure | Warning!
unprotected | ОК | | KNX secure | OK | Optimal protection | Remote access via NAT and KNX unsecure is completely unprotected and should never be used. Optimum protection results are reached by simultaneous use of KNX Security and VPN. ## **Open Source Licenses** This product contains open source software license: curve25519-donna: Curve25519 elliptic curve, the public key function Source: http://code.google.com/p/curve25519-donna/ Copyright 2008, Google Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## **WARNING** - The device must be mounted and commissioned by an authorized electrician - The prevailing safety rules must be heeded. - The device must not be opened. - For planning and construction of electric installations, the relevant guidelines, regulations and standards of the respective country are to be considered Hager Electro SAS 132 Boulevard d'Europe BP3 67210 OBERNAI CEDEX hager.com ## **Documents / Resources** ## References h Hager worldwide