

# HAC Telecom Technology NB-IoT Wireless Transparent Transmission Module User Manual

<u>Home</u> » <u>HAC Telecom Technology</u> » HAC Telecom Technology NB-IoT Wireless Transparent Transmission Module User Manual



Telecom Technology NB-IoT Wireless Transparent Transmission Module
User Manual

#### **Contents**

- 1 Overview
- 2 System chat
- 3 Electrical characteristics
- 4 Module characteristics
- 5 External serial communication protocol
- 6 Basic instructions
- 7 Structure size
- 8 Documents / Resources
  - 8.1 References
- 9 Related Posts

# **Overview**

HAC-NBi module is an industrial-grade RF product independently developed by Shenzhen HAC Telecom Technology Co., Ltd. By using NB-IoT module modulation and demodulation, it solves the small data decentralized communication problem in ultra-long range environments. Compared with the traditional modulation, HAC-NBi

module has obvious advantages of resisting co-channel interference, balancing the interference and distance, avoiding high power consumption, and installation of central gateway, which traditional solutions fail to take into account. In addition, the module has adjustable +23dBm power amplifier, achieving receiver sensitivity down at -129dBm and industry-leading level link budge as well. Therefore, the module is the perfect for applications that require long-distance transmission and extremely high reliability.

#### Module performance:

#### RF parameter

- NB-IoT module modem;
- Central gateway is not required, but NB-loT signal of base station must be available.
- The working frequency band is 850M (Band5), which belongs to the NB-IoT dedicated frequency band.
- Peak output power + 23dBm;
- Receiving sensitivity down at -129dBm;

### Power consumption

- Working voltage 3.1V ~ 4.2V, typically 3.6V;
- Support multiple low-power operation modes;
- Sleep power <10uA;
- Peak working current 260mA;

#### · Basic skills

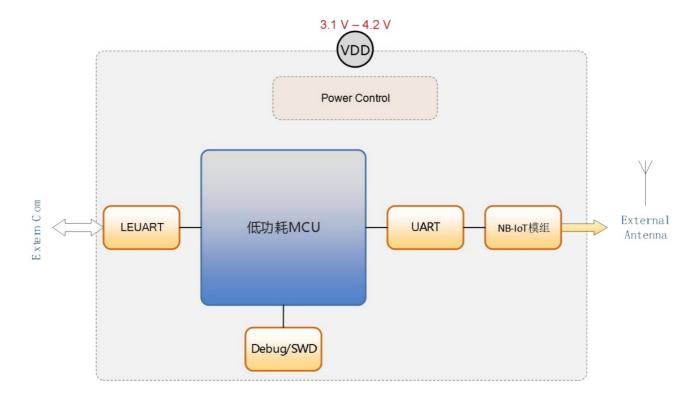
- 32 bits high-performance micro controller;
- Support low-power serial communication (LEUART), TTL level 3V, baud rate up to 9600bps;
- Semi-transparent/transparent communication method, directly communicate with the server through low-power serial port
- Supports AES128 encryption
- Compatible with Nano Sim\eSIM;
- Read parameters, set parameters, report data, and issue instructions through the low-power serial port

#### Size

- L\* W\* H: 40mm \* 28mm \* 5.5mm

#### **Application area**

Wireless automatic meter reading (including water, gas, heat, electricity meters, etc.) Wireless automated data acquisition


Home and building automation

Industrial monitoring and control

Wireless alarm and security system

IoT Sensor (including smoke, gas, water detector etc.) Smart home (including door locks, appliances, etc.) Intelligent transportation (including parking, charging piles, etc.) Smart cities (including street lights, logistics, cold chain, etc.)

# System chat



# **Electrical characteristics**

# **Working conditions:**

| Parameter                 | Min  | Тур | Max | Units |
|---------------------------|------|-----|-----|-------|
| Operating Voltage         | 3.1V | 3.6 | 4.2 | V     |
| Power on time             | _    | _   | 60  | ms    |
| working temperature range | -35  | 25  | 75  | °C    |

# Limit parameters:

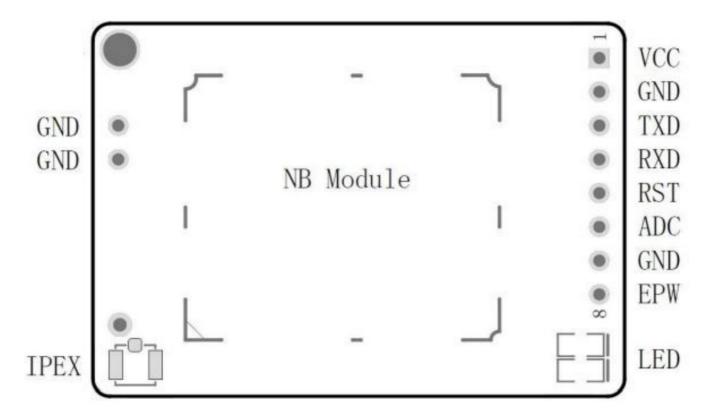
| Parameter | Min  | Тур | Max | Units |
|-----------|------|-----|-----|-------|
| voltage   | -0.3 | _   | 4.2 | V     |

| I / O level         | -0.3 | _ | VDD+0.3 | V  |
|---------------------|------|---|---------|----|
| storage temperature | -40  | _ | 85      | °C |

RF parameters:

Referring to NB module parameters

Basic parameter:


| Parameter                    | Min | Тур | Max  | Units |
|------------------------------|-----|-----|------|-------|
| overall module sleep current | _   | 6.0 | 10.0 | uA    |
| Input low                    | _   | _   | 0.9  | V     |
| Input high                   | 2.1 | _   | _    | V     |

- 1. Except as otherwise noted, all voltage values are specified relative to GND;
- 2. Exceeding the maximum absolute ratings may cause permanent damage to the equipment. Prolonged use under conditions of absolute maximum ratings may affect device reliability;
- 3. Storage at extreme temperatures may degrade device performance.
- 4. Electrostatic discharge may permanently damage the device. Some application environments may require external ESD or TVS protection.



# **Module characteristics**

### 4.1. General Pin Definition



Pinout (top view)

# General pin description:

| Pin | Name | function                 | Description                                |
|-----|------|--------------------------|--------------------------------------------|
| 1   | vcc  | Power                    | Positive power input, 3.1V-4.2V            |
| 2   | GND  | Power                    | Negative power, ground                     |
| 3   | TXD  | Digital I/O              | TX side of LEUART, baud rate is 9600bps    |
| 4   | RXD  | Digital I/O              | LEUART RX side, baud rate is 9600bps       |
| 5   | RST  | Digital I/O              | Reset signal input                         |
| 6   | ADC  | Digital I/O<br>Analog In | GPIO<br>Analog signal input                |
| 7   | GND  | Power                    | Power ground                               |
| 8   | EPW  | Power                    | 3.0V controllable power output             |
| 9   | ANT  | Analog In                | Antenna access port, interface type (IPEX) |

#### Remarks:

- 1. VCC: connecting to positive pole of the ER 18505 battery .
- 2. EPW: The standard is to provide a regulated power supply for the outside, and the maximum current is 5mA. The current function is adjustable and can be customized.
- 3. The back of the module is the programming pin and test pin, which is used by the supplier for production testing. It is not open to customers.

# **External serial communication protocol**

5.1. Overall structure of communication protocol data frame

| Name   | length  | Description                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HEAD   | 3 bytes | Frame header: 0x48 0x41 0x43                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| VER    | 1 byte  | Protocol version: Initial                                                                                                                                                                               | Protocol version: Initial version is 0x01                                                                                                                                                                                                                                                                                                               |  |  |  |
| TYPE   | 1 byte  | bit7: Transmission direction dir = 0x80: uplink; dir = 0x00: downlink; bit6-bit0: Frame type: frame type = 0x0A: user data reporting/ delivering frame type = 0x05: command input/reply Other: reserved |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| DATLEN | 2 bytes | Data field length, low by                                                                                                                                                                               | yte first, high byte last                                                                                                                                                                                                                                                                                                                               |  |  |  |
| DATA   | _       | data. When the frame type is at the same time, and emformat is as follows:  Data item length  1 byte                                                                                                    | When the frame type is user data reporting / delivering, the data fields are all user data.  When the frame type is not a user data field, multiple data items can be included at the same time, and each data items considered as an instruction. The data ite m format is as follows:  Data item length  Data item code  Data item content (optional) |  |  |  |
| CS     | 1 byte  | checksum. Starting from the first byte of the data frame and continuing to the last byte before the checksum, the sum of all bytes takes the lower 8 bits.                                              |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| END    | 1 byte  | End of frame: 0xED                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

The above is the overall frame structure of the communication protocol data frame. The data items in the data field have different meanings, see the following sections.

# 5.2. Data fields in communication protocol data frames

### 1. User data

When the frame type is user data reporting/delivering, the data fields are all user data. From the perspective of the terminal, the module does not do any processing to this data, and only uploads or sends the data through the serial port for the user; from the perspective of the server, the user data of the terminal has been packaged by the COAP + JSON protocol, and the data is upload to the server safely and correctly.

#### 2. Module instructions

When the frame type is instruction input/reply, the data field is a collection of data items. When the module receives the data item instruction, it will process the instruction in sequence and return the reply data frame. The data item code list is as follows:

| NO | Data item code 1st byte |           | Data item cod<br>e 2nd byte | Data item content                    |                 | Read and w  |
|----|-------------------------|-----------|-----------------------------|--------------------------------------|-----------------|-------------|
|    | Read com                | Write com | Parameter rc ode            | Parameter function                   | Content fo rmat | permissions |
| 1  | 0xA5                    | 0x5A      | 0x11                        | IP                                   | ASCII           | W/R         |
| 2  | 0xA5                    | 0x5A      | 0x12                        | APN                                  | ASCII           | W/R         |
| 3  | 0xA5                    | 0x5A      | 0x13                        | Frequency                            | ASCII           | W/R         |
| 4  | 0xA5                    | _         | 0x14                        | IMSI                                 | ASCII           | R           |
| 5  | 0xA5                    | _         | 0x15                        | IMEI                                 | ASCII           | R           |
| 6  | 0xA5                    | 0x5A      | 0x16                        | PORT                                 | ASCII           | W/R         |
| 7  | 0xA5                    | 0x5A      | 0x17                        | PLMN                                 | ASCII           | W/R         |
| 8  | 0xA5                    | _         | 0x18                        | ICCID                                | ASCII           | R           |
| 9  | 0xA5                    | _         | 0x19                        | Band                                 | ASCII           | R           |
| 10 | 0xA5                    | _         | 0x1A                        | Communication boar dive rsion number |                 | R           |
| 11 | 0xA5                    | _         | 0x1B                        | Module version number                | ASCII           | R           |
| 12 | 0xA5                    | _         | 0x1C                        | RSRP, SNR [2], CC, PCI [<br>2], CSQ  | HEX             | R           |
| 13 | _                       | 0x5A      | 0xFE                        | Start the upgrade process            | HEX             | W           |

#### **Basic instructions**

#### 6.1. Initial settings

- 1. The module is set up with common parameters when it leaves the factory. Generally, no special parameters need to be set;
- 2. The parameters can, if you need, be modified through the above protocol instructions, and the parameters can be saved after power-off, avoiding the repeating setting;

### 6.2. Work flow

1. After the initial setting is done, user data can be sent and received through the serial port. The communication mode can use two methods of package communication and transparent communication. It is recommended that users use package communication. The above are the differences in the data communication methods on the serial port side, which have nothing to do with the server side communication. Both methods will eventually

be packaged with the COAP + JSON protocol and uploaded to the server side without error;

- 2. After the module is powered on, it is in the sleep mode by default. You need to actively send data to the serial port to start the data communication of sending and receiving process;
- 3. Package communication method: Sending data:

User data is packaged according to the above protocol and then sent to the serial port. This method is the most secure, avoiding faulty operation;

4. Packet communication method: Receive data

After the user receives data from the serial port, if the uploaded data is packaged, the received data packet also needs to be unpacked according to our agreement. Then user data issued by the server can be obtained;

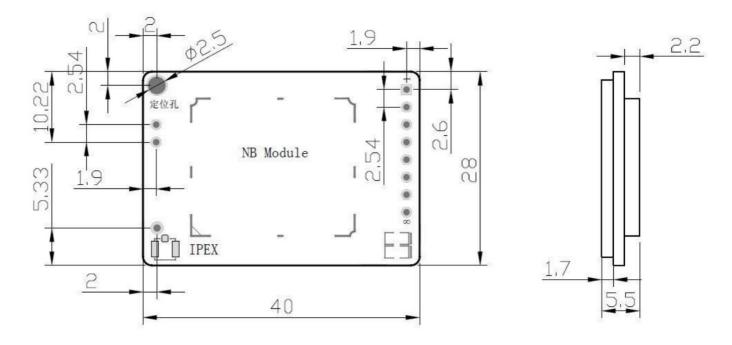
5. Transparent communication method: Send data:

User data can be directly sent to the serial port, as long as it does not conform to the data frame format of our protocol. You can also directly upload data, but it does not rule out that there is a small probability of misoperation;

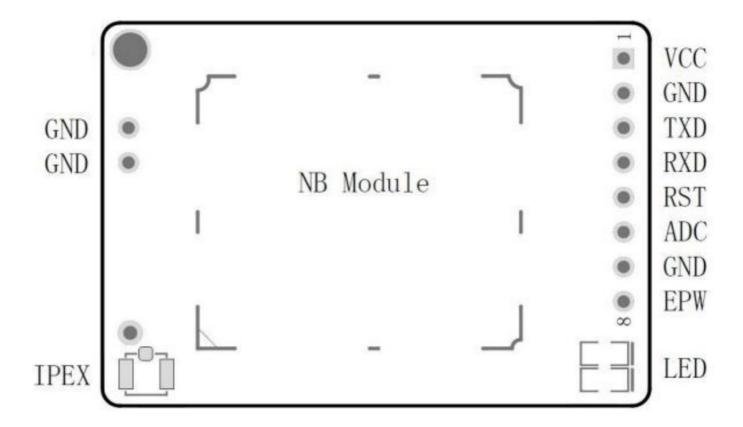
6. Transparent communication method: Receive data

If the uploaded data is transparently transmitted, the data received by user from the serial port is complete user data:

#### 6.3. Operating frequency band


The working frequency band of the NB module belongs to the original LTE frequency band. The frequency band of a single module is locked and cannot be switched. The currently used frequency band is Band 5 frequency band (850M). If customers need other frequency bands, please consult our sales staff.

#### 6.4. Other considerations


- 1. The external power supply voltage needs to be matched;
- 2. The baud rate and level of the external serial port need to match;
- 3. The SIM card must use a special Internet of Things card. There are two types of packages: traditional SIM card and eSIM card. If you need to apply for an IoT card, please contact the communication carrier for details;
- 4. The use of our module must match our communication protocol correctly. If customers have customized protocol requirements, please contact our sales staff;
- 5. The server-side protocol is COAP + JSON parsing

### Structure size

(A) Mechanical package (Unit: mm)



# (B) Pin out





9th floor, Block A, Building 1, International Innovation Valley,

Xingke 1st street, Nanshan district, Shenzhen, Guangdong

**Telephone**: 0755-23981078 **Fax**: 0755-23981007

Website: www.rf-module-china.com

# **Documents / Resources**



HAC Telecom Technology NB-IoT Wireless Transparent Transmission Module [pdf] User Manual

NB-IoT Wireless Transparent Transmission Module, Wireless Transparent Transmission Module, Transmission Module, Module

#### References

• C LoRaWAN Module, NB-IoT Module, Pulse Reader, AMR System -HAC

Manuals+,