Manuals+ — User Manuals Simplified.

GOWIN FPGA Development Board RISCV Programming User
Guide

Home » GOWIN » GOWIN FPGA Development Board RISCV Programming User Guide

Contents
1 GOWIN FPGA Development Board RISCV
Programming
2 Introduction

2.1 AE250 Introduction

2.2 Preparations

2.3 Developing and Debugging Steps
3 Debug Cable Connection Instructions
4 Use Instructions for RDS

4.1 RDS Installation

4.2 Create a New Project

4.3 Import and Export a Project

4.4 Download Programs to Flash

4.5 On-chip Debug

4.6 RDS Built-in Serial Terminal Usage
5 Reference Design

5.1 Project Code

5.2 Reference Design
6 Documents / Resources

6.1 References
7 Related Posts

GOWIN

PROGRAMMING FOR THE FUTURE

GOWIN FPGA Development Board RISCV Programming

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/gowin
https://manuals.plus/gowin/fpga-development-board-riscv-programming-manual.pdf

Copyright © 2022 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

is a trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and
Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the
property of their respective holders. No part of this document may be reproduced or transmitted in any form or by
any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of
GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible
for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or
intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this
document should be treated as preliminary. GOWINSEMI may make changes to this document at any time
without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current
documentation and errata.

Revision History

Date Version Description

04/29/2019 1.0E Initial version published.

« AndeSight RDS v311 software updated.

« Reference design updated.

11/11/2022 1.1E « The description of downloading embedded project compilation results
via SPI Flash updated.

Introduction

AE250 Introduction

AE250 is a 32-bit RISC-V MCU system; its structure is shown in Figure 1-1.

1
N25

— Inst

RAM | Bus Interfacs | ______
master slave

i

12C

RTC

SPI
UART

I=
o
m
m
=
(=

w
m

WDT

AXI/AHE APB
IP 1P| Py

Figure 1-1 AE250 Structure Diagram

Based on Gowin FPGA development board, the RISC-V AE250 MCU development and debugging system is
shown in Figure 1-2.

Gowin FPGA Dev Board : FC
+ ! |
Gowin Programmer
SPi Flash |
J' part 1
FPGA Chip 5P Flash e,
part 2
AE250 MCU
ILM (e
a4 » Perpherals
Debug > DB"“C ablg
Subsys
UART tem > Wirtual Hesling
ry
UART
Terminal

Figure 1-2 Development and Debugging System Structure Diagram

The FPGA chip on the development board is configured as an AE250 MCU using Gowin Programmer in PC, after

the Debug Cable is connected, you can perform the embedded program development and debugging with
AndeSight RDS v311 software.

Preparations
Before using Gowin FPGA and AE250 for development and debugging, the following tools need to be prepared:

1. Gowin GW2A series of FPGA development board.
2. Gowin Software installation package for configuring and downloading the FPGA chip.

3. AndeSight RDS v311 installation package for developing and debugging the embedded program.

4. Debug Cable is used for downloading and debugging the embedded program, and the default is AICE-MINI+;

users need to purchase it by themselves.

Note

1. If it needs to output information through UART, a UART to USB cable is needed.

2. Other peripherals to be used are required.

Developing and Debugging Steps

The basic steps for developing and debugging RISC-V AE250 MCU based on the GW2A-55C development board
are as follows:

1. Install softwares: Gowin Software is used to configure and generate AE250 RTL design and generate the
Bitstream file of the design; AndeSight RDS v311 software is used to develop and debug embedded programs;
other softwares and drivers for debugging are also required.

2. Configure the power supply and download cable of the development board. The Bitstream file of AE250_chip is
downloaded to the FPGA chip on the development board using Gowin Programmer, and AE250 is running on
the development board.

3. Open RDS software to create a new embedded project or open an existing project for encoding, compiling and
other operations. Connect the Debug Cable used for AE250 debugging, download the project compilation result
to the instruction memory (ILM) in AE250, and start debugging on the chip.

4. During debugging, you can use UART to USB cable to connect the UART interface of AE250 to PC, use the
built-in serial terminal in RDS to operate the input and output operations. You can use GPIO to connect to LED
indicators, keys, or external pins for input/output operations; 12C, SPI, Ethernet, and other peripherals can also
be selected to use.

5. AE250 can connect to a Flash via SPI, download the compilation result of embedded program to Flash using
Gowin Programmer; when the chip is powered on, AE250 will automatically read the embedded program in SPI
Flash and start. You can reuse the Flash that saves the FPGA Bitstream; some can save the FPGA bitstream,
and others can save the compilation results of embedded programs. This is a practical and economical
method.

You can see chapter 2 Debug Cable Connection Instructions, chapter

3 Use Instructions for RDS, and chapter 4 Reference Design for detailed steps.

Debug Cable Connection Instructions

RDS + AE250 use AICE-MINI+ debug cable by default; the exterior is shown at left in Figure 2-1, and the pins are
shown at right in Figure 2-1. It is a 12-pin interface. It is should be noted that pin 1 is blank in the figure. When the
cable is correctly connected and RDS is opened, the red LED light marked with yellow box in the figure will go out.
Figure 2-1 AICE-MINI+ Debug Cable and its Pins

The pin definition of AICE-MINI+ debug cable is as shown in Table 2-1. It should be noted that Pin 1 is defined as
No Connection (NC), corresponding to the blank one. VREF needs to connect a 3.3V power pin, and GND only
needs to connect the pin 3 or the pin 5.

Table 2-1 AICE-MINI+ Debug Cable Pin Definition

Pin Number AICE-MINI+ Debug Cable Pin
1 NC

2 TSRST_N
3 GND

4 TTMS

5 GND

6 TCK

7 VREF

8 NC

9 NC

10 TTRST_N
11 TTDO

12 TTDI

Use Instructions for RDS

RDS Installation

Unzip the installation package and enter Windows/Disk1; double-click setup.exe to install it. No special settings
are required during installation. During installation, a dialog box will pop up asking whether to install the driver,
please select yes. For installation steps, see

AndeSight_RDS_v3.2_Installation_Guide_UM207_V1.0.pdf, which can be found in the installation package.

1. When setting the installation path and workspace path, do not include Chinese characters or space, or it will
get a runtime error.

2. The current version of RDS supports AICE-MINI+ Cable by default.

3. GOWIN Programmer may be unable to connect to the development board after installing RDS, which can be
fixed by reinstall Gowin Programmer driver.

4. For serial number and certificate files, please contact Gowin Semiconductor Corp.

Create a New Project

Click File > New > Project > Andes C project > Next on RDS interface to enter the configuration interface of New C
Project, as shown in Figure 3-1.

Figure 3-1 Create a New Project

Ar F'rnjec: O Y

C Project —

Creste C project of celected type
Chip Profile: ADP-AE250-M25-GOWIN

Project name: [ae2530_demo

=] Use default location

EnandeSight3workspacelae2a0_demo Browse...
default
Projart typs: Taalchains:
v (= Andes Executable = nds22le-alf-meculib-v5m

& Empty Project

& Hcllu W ld ANSI C P u_il:l__
(= Andes Static Library
= Makefile project

] Show project types and toolchains only if they are supported an the platform

3
[a:]
s

ack MNext = Cancel

For the new C project, the following parameters need to be configured:

1. Project name

2. Location: The default location is the current workspace.

3. Connection Configuration is set to ICE, indicating that the development board is connected using ICE debug
cable. If the emulator is used as a test platform, please select SID.

4. For Chip Profile, select ADP-AE250-N25-GOWIN, which is optimized according to Gowin FPGA.

5. Project Type includes an Empty Project and a Hello World ANSI C Project.

6. For Toolchains, nds32le-elf-mculib-vbm is the default.
After creating a new project, right-click on the project name in the Project Explorer, select Build Project from the
drop-down menu or click ” ” on the toolbar to compile and link the project; select Clean Project from the drop-

down menu to make the project clean.

Import and Export a Project

Right click on the space of Project Explorer to select “Import” or “Export”, as shown in Figure 3-2.

L(Project Explarer (2 E 5 =

New »
Show In Alt+~Shift+W »
Copy Ctrl+C
Copy Clualified Name

T Paste Cirl+V
Delete Delete

iy Impart..

Ly Export.

#7 Refresh F5

Figure 3-2 Import/Export a Project

Click “Import > General > Existing Project into workspace” to import a project, and the interface is as shown in
Figure 3-3. When selecting “Select root directory”, import the project in folder; when selecting “Select archive fil”,
import the project in zip.

A Export O W
Archive file =Y
Please enter a destination archive file. 1 ‘l'.—j
[= RemoteSystemsTempFiles =] .cproject
% ae250 demo =] .praject
ae?50.1d

[] & ac250.50g

Flter Types... Salect All Deselact All
To archive file B
Options
® Save in gp format (® Creste directary structure for files
() Save in tar formar () Craata only selacted directarias

] Compress the contents of the file

(25

= Back Mext = FEinish Cancel

Figure 3-3 Import a Project

Select “Export... > Archive File” to open the export project interface, as shown in Figure 3-4. After selecting the
project to be exported, compression format, save path, etc. you can complete the export.

A Export O 0
Archive file
Export resources to an archive file on the local file system, 1%~
] &= RemoteSystemsTempRles =l cproject
] =¥ demo_ae250_sxFlash_gowin = .project
=| ae250.1d
J—-’;j as2ilzag
Filter Types... Select All Desalect All
To archive file: | DvAndesTechyworkspace-std-for-packagelaz250 spi demoazip Browse...
Options
@ Save in zip format ®) Create directory structure for files
() 5ave in tar format) Create only selected directories
Compress the conterts of the file
'f?:' + Back Next = Cancel

Figure 3-4 Export a Project

Download Programs to Flash

AE250 supports starting from Flash, then reads the embedded program from Flash via SPI interface and stores it
in ILM, and then the embedded program is executed. The recommended method is to reuse SPI Flash that saves
FPGA Bitstream; use the first half of Flash to save the FPGA Bitstream, and the remaining to save the binary files
of embedded programs.

1. Open the IP core generator in Gowin Software and call AE250 RTL parameters. Double-click the SMU to open
the SMU interface and set “System Reset Vector Default” to 0x80400000, as shown in Figure 3-5. Set the
space of SPI Flash 0~0x400000 with a total of 4M bytes as the save address of Bitstream; starting from
0x400000 is used as the save address of binary files of embedded programs.

Figure 3-5 System Reset Vector Default

W SMU Cenfiguration 7 X

SMU BASIC

SMU CSR Base Address: (0100000

SMU EXT Wake-up Level: | high -
SMU MDP Power-off Level: |high =

System SCRATCH REG

-

E Seratch Rﬂgister Support Seratch Fkrgistar Bit Width: 2l =

Scratch Register Default Value: |0

UserD SCRATCH REG

&

E Scratch thistcr Support Scratch R:gistcr Bit Width: a2 -

Scratch Register Default Value: |0

Uszerl SCRATCH REG

-

[Scratch Register Support Scratch Register Bit Width: 32 o

Scratch Register Default Value: |0

Systemn Reset Viector Default

Systern Reset Viector Default: | 80400000 |

2. Double-click SPI1 to open the SPI1 interface, check “SPI1 Support”, and set “SPI1 Memory Map Space Base
Address” to 0x80400000, as shown in Figure 3 6.
Figure 3-6 SPI1 Configuration

e SPI Corfigurstion T -4
SPI1 =PI2 =PI3 =PI4
[5211 Support

SP1 Interface Mode: | 5Pl v SPI1 RXFIFO Depth: AWerd -

5P TXFAFD Dapth: AWeord b SPI1 Memory Read CMD Default o =

SPI CS2CLK Defaule |0 SPIT CSHT Defauln
SPI SCLKDIV Defauh: |1 SPI1 CSR Base Address: 0500000

[5211 Slave Mode Support SPI1 Memory Map Space Base Address: (80450000
[C] $711 Direct 1/Q Control Support SPH Memory Map Space Size: 4MB -
Carce

3. In the physical constraints of RTL design, the SPI1 interface should be connected to SPI Flash, and the SPI1
interface should be physically constrained according to the following table. For different FPGA chips, the
location of MSPI interface is also different, and the constraint should be specific to the specific situation.

Table 3-1 SPI1 Interface Physical Constraints

AE250 SPI1 Interface FPGA MSPI Interface
CSN MCSN

CLK MCLK

MISO MSO

MOSI MSI

4. Reuse MSPI interface as regular 10. In the “Process” window of Gowin Software, right-click “Place & Route”,
select “Configuration” in the pop-up menu; select “Dual Purpose Pin” tab, and check “Use MSPI as regular 10”
and click “OK” to finish placement and routing.

Figure 3-7 Set MSPI Interface to Regular IO
[Configuration p 1

Dual-Purpose Pin

General [Use JTAG as regular 10

i SYF:::::'] Use 55PI 25 regular |0

 Blace & Route] Use MSPI a5 regular 10
General [] Use READY as regular 1O
Unused Fin

[Use DOMNE as reqular 10

Dual-Purpass Fin E
. L [Use RECONFIG_N as regular 10
BitStream -

Use |2C a5 regular 10

Cancel Apply

5. Modify embedded program parameter settings. First, modify the parameters of bootloader in the linker script.
Since the linker script in AE250 embedded program is automatically generated by SAG file, it should be
modified in the SAG file. Open ae250.sag, find BOOTLOADER and modify it to the value of System Reset
Vector Default in RTL design, as shown in Figure 3-8. Then modify config.h. Open src/bsp/config/config.h, and
find the macro definition
“BUILD_MODE” and modify it to “BUILD_BURN?”.

Figure 3-8 ae250.sag bootloader Parameters Setting

1 LJ.‘.-‘J:J.&_.‘:‘E:.:'J'J.U:-S -bootloader
I= USER_SECTIONS . loader

{= HERD 0x00000000
5 1
BOOTLOARDER O0xXE0200000
{
ADDE _ flash start

* FEEF [.bootloader)
LOADADDR _ bootloader lmacnd

Note

o The parameter should be consistent with the value of System Reset Vector Default of the RTL
parameter.
o Modify the compilation settings; right-click the name of the embedded project, select Build Settings;

select “Objcopy > General” tab, and uncheck “Disable”. (Do not auto-generate output file.)

Recompile the embedded program to generate binary files of the embedded project, and download the files to SPI
Flash 0x400000 address using Gowin Programmer external Flash C Bin mode.
Synthesize and place & route the modified RTL design again, and download it to SPI Flash 0x000000 address

using Gowin Programmer external Flash mode.

On-chip Debug

After compilation, the compilation results of the embedded project can be downloaded to the development board
for on-chip debug.

Modify config.h; open src/bsp/config/config.h, and find the macro definition BUILD_MODE; modify it to
BUILD_LOAD, and recompile the embedded program.

Right-click on the project name in the Project Explorer, and select “Debug as > MCU Program “from the drop-down
menu. For the first time, , a dialog box will pop up for setting “Debug Configuration”, as shown in Figure 3-9.

El Conscle 2 Problems [Dropertie .'}!‘ Terminal @GDB Com == [hzaszem o0 = 0
Enter location hera v|| &1 fit [|_,.=_‘| | i

B 00002764 ! lui a5, 0x3 A

00002768 addi a5,a5,-157€ # 0x29d2 <Driver GPIO>

0000276c: aw ab,-24% (a0}

ge '.1'_1"11',-3_: num = 4d;

) 2770 sk zero,-17(30)

=l uint3?_t led pin = 0: ff Thi= led

¥ aw zero,-28 (al)

princf("\r\nThis is ac250-n25 demo.\zin™);

00 lul af,0x3

J addl al,a5,-1388 # OxZad%

00002TE0: 21 0x236c <printf>

53 printf ("\r\nr=———=== Hellog ========== S\r\n")

0og02TE2 lui ad, 0x3

ODO02TEE: addi ad,as5,-1360 # 0x2abo

! a Jal OxZ3ec <printfi>

== & = S00000;

00002 T8e: lui ab,0=xTa W

Figure 3-9 Debug Configurations

In the “Startup” tab, check “Reset and Hold” option to stop the program before executing the first instruction. Enter
load in the parameter box below this option to download the compilation results of the embedded project into the
ILM before on-chip debug.

In “Runtime Options”, check “Set breakpoint at”. Enter a label, such as main in the input box. It can set a
breakpoint at the beginning of the main function. Check “Resume”, and it will start the continuous operation
directly after entering on-chip debug.

When entering on-chip debug, it automatically goes to the debug view and an area will be displayed, as shown in
Figure 3-10. This area is the operation area for on-chip debug. Some shortcut buttons for debug are shown in the
red box. From left to right, they mean restart DEBUG, continue to run, suspend, end, disconnect, link to one
process, step into, step over, step return, and instruction stepping mode; in this mode, each time it runs a risc — v
assembly instruction, otherwise each time it runs a C statement.

Note!

The grayed icons mean that they are unavailable at this time.

Double click the left on the line number in the code text to quickly set breakpoints or cancel breakpoints, and right
click in the code text to select “run to line” from the pop-up menu.

{5 Debug & Moo me .m0 70
w ff 22250 demeo Debug [MCU Program]

T
~ % Process

~ o Thread #1 [Suspended : Breakpoint)
= main() at main.c:88 0x2764
pid gdb(7.12.50.20170302)-0

Figure 3-10 Debug Buttons Introduction

Figure 3-11 is an assembly statements window that displays the contents of assembly instructions running in real
time in ILM.

El Conscle [2 Problems [[] Propertie A8 Tarminzl [Gl GDE Com == Dizassem &2 = 0
LA AR el

Jui a5, 0x3 L
addi a5,a5,-157& # 0x24dS “Driver GPIO»
aw ab,-24(20)
'.1‘.:’11',-3_3 num = 4d;
gk zero,-17(30)
uint3?_t led pin = 0: f/ Thiz led

Enter location hers ---|

aw zero,-28 (al)

princf("\r\nThis is ac250-n25 demo.\zin™);
lul af,0x3
addl al,a5,-1388 # OxZad%

lui ad, 0x3
addi ad,as5,-1360 # 0x2abo
Jjal Ox236c <printi>

& = 500000;

lui ab,0x7a W

Figure 3-11 Assembly Instruction Code Window

RDS Built-in Serial Terminal Usage

Figure 3-12 shows the UART Terminal built in RDS interface. If you need to use, click “Window > Show View >
Terminal” in the top menu to open “Terminal” window, and then click “open a terminal” to create a new serial
terminal. After setting the port number (which can be viewed in the hardware manager), baud rate and other
parameters, click “OK” to start using.

B console [[2] Problems | © Propertie | 4™ Terminal 13~ [G GDB Com | 2= Disassem = O
| A -
El Serial COMS (10/10/22 11:24 L
. . . Lol
This is e2e250-m2S demo. Choose terminal: | Serial Terminal ~
Settings
e 110 ——
Part: COMS5 "
Baud Rate: 38400 ~
Data Bits: B b
Parity: Mone w
Stop Bits: 1 w
Flow Contral: | Mone e
Timeout (secl: | 3
Encoding: |Default (150-8833-1) v
o
€ | >

Figure 3-12 RDS Built-in Serial Terminal

For the details, see the document
AndeSight RDS_v3.1_User_Manual_UM170_V1.0.pdf, which can be found in the doc path of the installation
directory.

Reference Design

Project Code

The key files in the AE250 embedded project template are as follows:

1. src/bsp/ae250/ae250.h: This file contains the system clock definition, peripheral register definition, peripheral
register address mapping definition, and interrupts source number definition. The clock definition must be
consistent with the AE250 parameters configuration.

2. src/bsp/ae250/ae250.c: The reset_handler function is the entry to start the embedded program. In the entry,
UART initialization is performed before the main function is executed. The required UART port is selected and
the required baud rate is configured according to the parameter configuration of AE250.

3. src/bsp/ae250/interrupt.c: This file is the definition of interrupt handler functions of AE250

4. src/bsp/config/config.h: This file contains the macro definition that control compilation method. #define
BUILD_MODE can be defined as BUILD_LOAD or BUILD_BURN. BUILD_LOAD means that the program is
loaded directly into ILM, and it is generally used when debugging. BUILD_BURN means the program is
downloaded to SPI Flash, and the program is read from SPI Flash to ILM first after power on, and then run,
which is applicable to release version program.

5. Start.S: The starter file written in assembly language.

6. src/bsp/loader.c: bootloader file, which is used to start from SPI Flash.

7. ae250.sag: Sag is the scattering-and-Gathering format script. It's used to generate linker script. It should be
noted that the memory map parameters in ae250.sag need to be consistent with those in AE250.

8. src/bsp/driver: This directory contains two folders, ae250 is AE250 driver code, include is the call interface of
driver functions.

9. src/bsp/lib: It contains two files. In printf.c, the form of subfunction in C standard library is redefined to output

printf information through UART. In read.c, there is a simple function to read input information through UART.

Reference Design

After the installation, several basic reference designs can be found in the demo folder of the installation directory
or in the reference design zip at the website; the reference design can be loaded into RDS for trial, debugging and
redeveloping by the way of importing. The reference designs are shown as follows:

1. ae250_demo: Demonstrates UART input/output and GPIO output of the AE250.

2. ae250_plic: Demonstrates the response of the interrupt controller to interrupts, and provides demonstrations of
the machine timer and pit timer.

3. ae250_freertos: Demonstrates that the AE250 ports embedded
real-time operating system FreeRTOS multi-threading running program.

4. ae250_ucosiii: Demonstrates that the AE250 ports embedded real-time operating system uC/OS-11l multi-

threading running program.

Documents / Resources

GOWIN

GOWIN FPGA Development Board RISCV Programming [pdf] User Guide
FPGA Development Board RISCV Programming, Board RISCV Programming, FPGA Developm
ent RISCV Programming, RISCV Programming, Board RISCV

References

« B3 AICE-MINI+ - Andes Technology

Manuals+,

https://manuals.plus/m/a1543467f7cafa74d8aa98d515fe925909b7260cb4545bf50be06cf5da3df810
https://manuals.plus/m/a1543467f7cafa74d8aa98d515fe925909b7260cb4545bf50be06cf5da3df810_optim.pdf
http://www.andestech.com/en/products-solutions/andeshape-platforms/aice-mini-plus/
https://manuals.plus/

	GOWIN FPGA Development Board RISCV Programming User Guide
	GOWIN FPGA Development Board RISCV Programming
	Introduction
	AE250 Introduction
	Preparations
	Developing and Debugging Steps

	Debug Cable Connection Instructions
	Use Instructions for RDS
	RDS Installation
	Create a New Project
	Import and Export a Project
	Download Programs to Flash
	On-chip Debug
	RDS Built-in Serial Terminal Usage

	Reference Design
	Project Code
	Reference Design

	Documents / Resources
	References

