

Global Synthetics GS_028 LLDPE Single Side Textured Geomembrane Owner's Manual

Home » Global Synthetics » Global Synthetics GS_028 LLDPE Single Side Textured Geomembrane Owner's Manual ™

Contents

- 1 Global Synthetics GS_028 LLDPE Single Side Textured Geomembrane
- **2 Product Usage Instructions**
- **3 Product Information**
- 4 Applications
- **5 Product Data Sheet**
- 6 About Us
- 7 Leaders in Geosynthetics
- 8 FAQ
- 9 Documents / Resources
 - 9.1 References

Global Synthetics GS_028 LLDPE Single Side Textured Geomembrane

Specifications

Product: LLDPE Single Side Textured Geomembrane

Applications: High friction lining material for leachate pads, channels, dams & containment structures

Product Data Sheet

Properties	Unit	Value
Thickness Average nom. (-5%)	mm	1.00 – 2.50 (varies by grade)
Asperity Height (min avg.)	mm	0.4

Product Usage Instructions

Preparation

- 1. Ensure the surface is clean, dry, and free from any debris.
- 2. Check the compatibility of the geomembrane with the substrate.

Installation

- 1. Unroll the geomembrane carefully over the designated area.
- 2. Secure the edges of the geomembrane using appropriate fasteners.

Maintenance

- 1. Regularly inspect the geomembrane for any signs of damage or wear.
- 2. Clean the geomembrane periodically to prevent dirt buildup.

ProLiner® LLDPE Liner Single Side Textured LLDPE Single Side Textured Geomembrane

A high friction lining material for leachate pads, channels, dams & containment structures

Product Information

LLDPE smooth/textured geomembranes have a generalised use as high friction lining materials for leachate pads, channels, dams & containment structures. LLDPE is a polymer with very short & uniform branches which make its melt temperature, tensile strength & cracking resistance superior to LDPE. ProLiner® LLDPE is a non polar, semicrystalline thermoplastic with good mechanical properties, high chemical stability & electrical insulation. ProLiner LLDPE does not absorb humidity, is odourless & is physically inert. ProLiner LLDPE geomembranes are manufactured with resins which are specially formulated & certified.

LLDPE smooth/textured geomembranes have a density from 0.928 – 0.939 g/cm3. ProLiner® LLDPE smooth/textured geomembranes have low permeability, high stress resistance & flexibility, high break elongation & good chemical & UV resistance (2-3% carbon black). ProLiner® LLDPE smooth/textured geomembranes offer improved frictional resistance of the liner on steep slopes.

All ProLiner® LLDPE geomembranes are manufactured to exceed the requirements of GRI GM17 standards.

Applications

The use of membranes in civil and environmental applications is becoming more widespread as there develops a greater understanding of the effects of contaminated ground conditions on structures and the environment.

Global Synthetics are able to offer a wide range of membranes that are compatible with the diverse range of applications and contaminants likely to be encountered.

Product Data Sheet

Product Grade

Properties	Unit	Test Method	Standard 1.00mm	Standard 1.50mm	Standard 2.00mm	Standard 2. 50mm
Thickness Average nom. (-5%)	mm	ASTM D 5994	0.95	1.425	1.9	2.375

Thickness Minimum (-15%)	mm	ASTM D 5994	0.85	1.275	1.70	2.125
Asperity Height (min avg.)	mm	ASTM D 7466	0.4	0.4	0.4	0.4
Density (max)	g/cm3	ASTM D 792	0.939	0.939	0.939	0.939
Tensile Properties						
Break Strength kN/m		ASTM D 6693	11	16	21	26
Break Elongation %		(Type IV)	350	350	350	350
2% Modulus (max)	N/mm	ASTM D 5323	420	630	840	1050
Tear Resistance	N	ASTM D 1004	100	153	204	255
Puncture Resistance	N	ASTM D 4833	240	340	440	550
Axi-Symmetric Break Resistance % (min)	e Strain	ASTM D 5617	30	30	30	30
Carbon Black Content	%	ASTM D 1603	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0
Carbon Black Dispersion	Cat	ASTM D 5596	1-2	1-2	1-2	1-2
Oxidative Induction Time (OIT)	min	ASTM D 3895	100	100	100	100
Oven Ageing at 850C	%	ASTM D 8721	35	35	35	35
Standard OIT (90days)						
or						
High Pressure OIT (90 days)		ASTM D 3895	60	60	60	60
UV Resistance		GM 11				
% High Pressure OIT (1600 hours)	ASTM D 5885	35	35	35	35

 $\label{proLiner} \textbf{ProLiner} \textbf{@} \ \text{is a registered trademark of Global Synthetics Pty Ltd.}$

ProLiner® is manufactured to ISO9001, quality assurance procedure. Properties of ProLiner® are minimum typical roll values unless otherwise noted. (GM) refers to the Geosynthetic Research Institute GRI-USA.

About Us

Leaders in Geosynthetics

Global Synthetics is a 100% Australian-owned company, proud to offer a complete range of high-quality geosynthethic products backed by over 200 years of combined staff experience in the industry. We have supplied products to some of the largest recent infrastructure works in Australia. Global Synthetics provides major benefits to any geotechnical engineering project with the right products and our technical expertise.

Global Synthetics products are used in the following applications:

- · Pavement Stabilisation
- · Ground Improvement
- Soil Reinforcement and Retaining Structures
- · Water Management
- Drainage Systems & Hydraulic Works
- Landfills
- · Coastal Erosion Structures

Get in Touch

AUSTRALIA

- Website globalsynthetics.com.au
- Email

info@globalsynthetics.com.au

- New South Wales
 - (02) 9725 4321
- North Qld
 - (04) 5921 1692
- Victoria/Tasmania
 - (03) 9791 1772
- Queensland
 - (07) 3865 7000
- South Australia
 - (08) 8384 8894
- · Western Australia
 - (08) 9459 4300

NEW ZEALAND

- Website globalsynthetics.co.nz
- Email

info@globalsynthetics.co.nz

Auckland

Christchurch

0800 510 120

All information provided in this publication is correct to the best knowledge of the company and is given out in good faith. The information presented herein is intended only as a general guide to the use of such products and no liability is accepted by Global Synthetics Pty Ltd for any loss or damage however arising, which results either directly or indirectly from the use of such information. Global Synthetics Pty Ltd have a policy of continuous development so information and product specifications may change without notice.

February 2025

FAQ

Q: What are some common applications of the LLDPE Single Side Textured Geomembrane?

A: The geomembrane is commonly used in leachate pads, channels, dams, and containment structures.

Q: How can I contact Global Synthetics for more information?

A: You can visit their website at globalsynthetics.com.au or globalsynthetics.co.nz, or contact them via email or phone using the provided contact details.

Documents / Resources

Global Synthetics GS_028 LLDPE Single Side Textured Geomembrane [pdf] Owner's Manu al

GS_028, GS_028 LLDPE Single Side Textured Geomembrane, LLDPE Single Side Textured Geomembrane, Single Side Textured Geomembrane, Textured Geomembrane, Geomembrane

References

User Manual

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.