

formlabs ESD Resin Static Electronics Manufacturing **Workflows User Guide**

Home » formlabs » formlabs ESD Resin Static Electronics Manufacturing Workflows User Guide 🖺

Contents

- 1 formlabs ESD Resin Static Electronics Manufacturing **Workflows**
- **2 Product Specifications**
- **3 Product Usage Instructions**
- **4 Product Information**
- **5 Material Properties**
- **6 SOLVENT COMPATIBILITY**
- 7 FAQs
- 8 Documents / Resources
 - 8.1 References

formlabs ESD Resin Static Electronics Manufacturing Workflows

Product Specifications

Mechanical Properties	Metric	Imperial
Ultimate Tensile Strength	44.2 MPa	6410 psi
Tensile Modulus	1.937 GPa	280.9 ksi
Elongation at Break	12%	
Flexural Strength	61 MPa	8860 psi
Flexural Modulus	1.841 GPa	267 ksi
Notched Izod	26 J/m	0.489 ft-lb/in
Unnotched Izod	277 J/m	5.19 ft-lb/in
Heat Deflection Temp. @ 1.8 MPa		
Heat Deflection Temp. @ 0.45 MPa		
Thermal Expansion	Metric	Imperial

Product Usage Instructions

1. Applications:

- Anti-static prototypes and end-use parts.
- Housings for sensitive electronics.
- Tooling, jigs, and fixtures for electronics manufacturing.

Benefits:

• IESD Resin is a rugged ESD-safe material that improves electronics manufacturing workflows by reducing the risk of static discharge and increasing manufacturing yield.

Usage Recommendations:

- Use ESD Resin to 3D print custom tools, jigs, and fixtures to protect critical electronics components from static discharge.
- Ensure proper post-curing for optimal material properties.

Product Information

Reduce risk and increase manufacturing yield by 3D printing custom tools, jigs, and fixtures with ESD Resin that protect your critical electronics components from static discharge. ESD Resin is a cost-effective solution for producing static-dissipative parts designed to endure use on the factory floor. Anti-static prototypes and end-use parts Housings for sensitive electronics Tooling, jigs, and fixtures for electronics manufacturing.

Material Properties

Material Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
	Post-Cured	Post-Cured	
Mechanical Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
Ultimate Tensile Strength	44.2 MPa	6410 psi	ASTM D638-14
Tensile Modulus	1.937 GPa	280.9 ksi	ASTM D638-14
Elongation at Break	12%		ASTM D638-14
Flexural Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
Flexural Strength	61 MPa	8860 psi	ASTM D790-17
Flexural Modulus	1.841 GPa	267 ksi	ASTM D790-17
Impact Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
Notched Izod	26 J/m	0.489 ft-lb/in	ASTM D256-10
Unnotched Izod	277 J/m	5.19 ft-lb/in	ASTM D4812-11
Thermal Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
Heat Deflection Temp. @ 1.8 MPa	54.2 °C	129.6 °F	ASTM D648-18
Heat Deflection Temp. @ 0.45 MP a	62.2 °C	143.9 °F	ASTM D648-18
Thermal Expansion	123.7 μm/m/°C	68.7 μin/in/°F	ASTM E813-13
Electrical Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
Surface Resistivity	105 – 108 Ω/sq		ANSI/ESD 11.11 3
Volume Resistivity	105 – 107 Ω-cm		ANSI/ESD 11.11 3
Physical Properties	METRIC 1,2	IMPERIAL 1,2	METHOD
Density	1.116 g/cm3	69.67 lb/ft3	ASTM D792
Hardness	90 Shore D		ASTM D2240

SOLVENT COMPATIBILITY

Percent weight gain over 24 hours for a printed and post-cured 1 \times 1 \times 1 cm cube immersed in respective solvent:

Solvent	24 hr weight gain, %	Solvent	24 hr weight gain, %
Acetic Acid 5%	0.5	Mineral oil, heavy	0.1
Acetone	13.1	Mineral oil, light	0.1
Bleach ~5% NaOCl	0.5	Salt Water (3.5% NaCl)	0.6
Butyl Acetate	3.8	Skydrol 5	0.5
Diesel Fuel	0.2	Sodium hydroxide solution (0.025% p H = 10)	0.7
Diethyl glycol monomethyl ether	3.6	Strong Acid (HCI Conc)	1.4
Hydraulic Oil	0.2	TPM	0.6
Hydrogen peroxide (3%)	0.6	Water	0.7
Isooctane	< 0.1	Xylene	1.60
Isopropyl Alcohol	2.6		

More Information

- 1. Material properties may vary based on part geometry, print orientation, print settings, temperature, and disinfection or sterilization methods used.
- Data for post-cured samples were measured on Type IV tensile bars printed on a Form 3 printer with 100 μm
 ESD Resin settings, washed in a Form Wash for 20 minutes in ≥99% Isopropyl Alcohol, and post-cured at 70°C
 for X 60 minutes in a Form Cure.
- 3. ESD Resin was tested at ETS 700 West Park Avenue, Perkasie, PA 18944.

To the best of our knowledge the information contained herein is accurate. However, Formlabs, Inc. makes no warranty, expressed or implied, regarding the accuracy of these results to be obtained from the use thereof.

FAQs

Q: What applications is ESD Resin suitable for?

• **A:** ESD Resin is suitable for anti-static prototypes, end-use parts, housings for sensitive electronics, and tooling, jigs, and fixtures for electronics manufacturing.

Q: How can I ensure the best results when using ESD Resin?

• **A:** To achieve optimal results, follow the recommended usage instructions provided in the user manual, ensure proper post-curing, and consider factors like part geometry, print orientation, print settings, temperature, and disinfection or sterilization methods used.

Documents / Resources

formlabs ESD Resin Static Electronics Manufacturing Workflows [pdf] User Guide V1 FLESDS01, ESD Resin Static Electronics Manufacturing Workflows, ESD Resin, Static Electronics Manufacturing Workflows, Manufacturing Workflows, Workflows

References

• User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.