
Home » FDI » FDI LPC1788 Microcontroller-based SOMDIMM module User Guide

FDI LPC1788 Microcontroller-based SOMDIMM module User Guide

Information in this document is provided solely to enable the use of Future Designs products. FDI assumes no
liability whatsoever, including infringement of any patent or copyright. FDI reserves the right to make changes to
these specifications at any time, without notice. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, for any purpose, without the express written permission of Future
Designs, Inc. 996 A Cleaner Way, Huntsville, AL 35805

NOTE: The inclusion of vendor software products in this kit does not imply an endorsement of the product by
Future Designs, Inc.
© 2023 Future Designs, Inc. All rights reserved.

For more information on FDI or our products please visit www.teamfdi.com.

μEZ® is a registered trademark of Future Designs, Inc.

FDI LPC1788 Microcontroller-based SOMDIMM module User
Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/fdi
https://manuals.plus/fdi/lpc1788-microcontroller-based-somdimm-module-manual.pdf
http://www.teamfdi.com

Microsoft, MS-DOS, Windows, Windows XP, Microsoft Word are registered trademarks of Microsoft Corporation.
Other brand names are trademarks or registered trademarks of their respective owners.

FDI PN: MA00015
Revision: Rev 2.13, 07/11/2023
Published in the United States of America

Contents
1 Introduction
2 Downloading uEZ®
3 Project Configuration
4 Rowley CrossWorks CrossStudio v4.10.x Project
Configuration
5 Downloading and Debugging uEZ® on the Target
6 Downloading and Debugging uEZ® on the Target
7 Questions and Support
8 Can we use another RTOS?
9 Which compiler suites do you support?
10 What debug tools are available?
11 Which processors are supported?

11.1 Documents / Resources
11.1.1 References

11.2 Related Posts

Introduction

μEZ® takes its name from the Muses of Greek mythology. A Muse was a goddess who inspired the creation
process for the arts and sciences. Like its ancient Greek namesake, the μEZ® platform inspires rapid development
by supplying customers with an extensive library of open-source software, drivers, and processor support – all
under a common framework. μEZ® development works on the premise of ”design once, reuse many times”. This
provides an open-source standard for embedded developers to build upon and support. μEZ® allows companies
to focus on innovation and on their own value-added applications while minimising development time and
maximising software reuse.

The diagram below shows a typical embedded application stack. μEZ® has three primary categories of
components that help simplify embedded application development:

1. Operating System Abstraction Layer (μEZ® OSAL)

2. Sub-system drivers (μEZ® TCP/IP, μEZ® USB, μEZ® Driver)

3. Hardware Abstraction Layer (μEZ® HAL)

https://manuals.plus/#introduction
https://manuals.plus/#downloading_uezr
https://manuals.plus/#project_configuration
https://manuals.plus/#rowley_crossworks_crossstudio_v410x_project_configuration
https://manuals.plus/#downloading_and_debugging_uezr_on_the_target
https://manuals.plus/#downloading_and_debugging_uezr_on_the_target1
https://manuals.plus/#questions_and_support
https://manuals.plus/#can_we_use_another_rtos
https://manuals.plus/#which_compiler_suites_do_you_support
https://manuals.plus/#what_debug_tools_are_available
https://manuals.plus/#which_processors_are_supported
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

The selection of an RTOS can be one of the most daunting aspects of an embedded system development. With
μEZ® the primary features of common multi-tasking operating systems are abstracted, thus easing the transition
to an open source or low-cost RTOS. The μEZ® OSAL provides applications access to the following features in an
OS independent fashion:

Pre-emotive multitasking

Stack overflow detection

Unlimited number of tasks

Queues

Semaphores (binary, counting, mute)

The μEZ® sub-system drivers utilise the OSAL functions to provide protected access to the processor peripherals.
The sub-system driver API functions are typically protocol layer interfaces (TCP/IP, USB, etc) designed as high-
level access routines such as open, close, read, write, etc. where possible.

The HAL functions provide single-threaded unprotected access to the processor peripherals. Customers can use
the μEZ® HAL routines provided by FDI or they can write their own. The HAL routines provide for RTOS/μEZ®
independence and allow portability within a family of processors.

μEZ® is ideally suited for Embedded Systems with standard features such as:

Processor and Platform BSPs (Board Support Packages)

Real Time Operating System (RTOS)

Memory Management

NAND/NOR Flash

SDRAM and DDR Memory

TCP/IP stack

USB Device/Host Libraries

Mass Storage Devices

LCD Displays with Touch Screen

Input / Output Devices

Downloading uEZ®

Start by downloading the latest version of uEZ® from https://sourceforge.net/projects/uez/. Unzip to a working
folder. In this document we will use a simple directory structure of /uEZ but the user is free to modify this as
desired.

The uEZ® file directory structure should be as follows:

https://sourceforge.net/projects/uez

Directory Description

uEZ/Build Projects/make files for different applications/demos

uEZ/Include uEZ® system files and Config.h

uEZ/Include/Device Device Driver class definitions.

uEZ/Include/HAL Hardware Abstraction Layer (HAL) driver class definitio
ns.

uEZ/Include/Types Common data types used by both HAL and Device Driv
ers.

uEZ/Source Source code

uEZ/Source/Devices/<category>/<manufacturer>/<devi
ce>

Device specific code organised by category (I2C, SSP,
etc.), manufacturer, and specific device.

uEZ/Source/Library/<category>/<package> Various support libraries organised by category (graphi
cs, file system, etc.) and package name.

uEZ/Source/Platform/<manufacturer>/<platform> Platforms/boards code organised by manufacturer and
specific platform build.

uEZ/Source/Processor/<manufacturer>/<processor> Processor specific code in separate directories organis
ed by manufacturer and specific processor.

uEZ/Source/RTOS/<RTOS>/ RTOS source code in separate directories

uEZ/Source/uEZSystem uEZ® System Core routines

uEZDemos/Build Demo Project files are stored by type and specific boar
d.

uEZDemos/Source/App User Application/Shared Demo source code

Project Configuration

uEZ® uses a simple one project configuration. Depending on the compiler tools, use one of the following
subsections.

Preparing the uEZ® Source Code
Download the uEZ® v2.13 (or later) source code from http://www.sourceforge.net/projects/uez. Unzip the file to
where you will be working. It should create a folder called /UEZ_SRC.

Rowley CrossWorks CrossStudio v4.10.x Project Configuration

Check CrossStudio Version
uEZ® is built using v4.10, or later, of the Rowley CrossWorks CrossStudio for ARM® toolset. To confirm the
version number of the tools, go to “Help” → “About” in the main menu and the version number should appear in the
middle of the dialog.

http://www.sourceforge.net/projects/uez

Check Installed Packages
In addition, packages for your target processor(s) should be installed. Go to Tools->Show Installed Packages and
see which packages have been installed. For example,

If doing development with the NXP LPC1788/LPC4088, the following packages should be installed:
ARM CPU Support Package
NXP LPC1000 CPU Support Package

If the packages are not installed, go to “Tools” → “Download Packages from Web”, download the missing
packages,and then use “Tools” → “Install Package…” to install them.

Opening and Compiling uEZ®
Before the uEZ project can be downloaded and debugged, the uEZ Library needs to be built.
Open the library project file in the \uEZ\Build directory. For example, when working on the uEZGUI-4088-43WQN,
open “\uEZ\Build\Generic\NXP\LPC4088\Free RTOS\ Cross Works\ uEZ_NXP_LPC4088_Free RTOS_ Cross
Works.hz “. The Project Explorer should appear at the right showing all the files in the project.

To compile the code for the first time, select “Build” → “Build uEZ_NXP_LPC4088_Free RTOS_ Cross Works” from
the toolbar menu, or press . When complete, the output should report “Build Complete” or “Build up to date” when
done.

Close the uEZ Library project.

The uEZ distribution comes with a uEZ GUI Demonstration Application project file:
“\uEZDemos\Build\FDI\uEZGUI\uEZGUI-4088-43WQN\CrossWorks\uEZGUI-4088-43WQN.hzp”.

Open the “uEZGUI-4088-43WQN.hzp” project and compile just as with the uEZ Library. Select “Build” → “Build
uEZGUI-4088-43WQN” from the toolbar menu, or press . When complete, the output should report “Build
Complete” or “Build up to date” when finished and report the memory usage for this project.

Downloading and Debugging uEZ® on the Target

1. Plug the J-Link device into the PC and install any drivers as directed. The Segger J-Link drivers can be found at

http://www.segger.com/cms/jlink-software.html with additional information at

http://www.segger.com/cms/development-tools.html.

2. Plug the J-Link’s JTAG cable into the target (e.g., uEZGUI-4088-43WQN’sJ5 connector).

3. Power on the target board.

4. Select “View” from the toolbar and choose “Targets”. The following list will appear on the right:

http://www.segger.com/cms/jlink-software.html
http://www.segger.com/cms/development-tools.html

5. Right click on “Segger J-Link” and select Properties,

6. If this is the first time you are programming with the J-Link on the Rowley Platform…

a) Click on “J-Link DLL File”.

b) Press the “…” button and find the file Treblinka (usually installed in C:/Program Files/SEGGER/”)

c) If programming a blank LPC4088 part, select a Speed of 100 kHz. If the LPC4088 has already been

programmed, select a Speed of 4000 kHz.

7. Right click on “Segger J-Link”, and click “Connect Segger J-Link”.

8. Press to download the application to the target and start debugging. When the application starts, it will pause at

main(). Press again to continue executing the code.

9. To stop at any line of code, right click the line and select Toggle Breakpoints. Execution will stop automatically

at the breakpoints. Press again to continue debugging.

10. When done debugging, select “Debug” → “Stop” from the toolbar, or the button from the Debugging Menu. The

debugger will return to standard editor mode.

11. From this point on, the process is simply a matter of editing code, compiling the code (Build->Build uEZ or

pressing F7), and then running the debugger.

IAR Systems Embedded Workbench v9.32.1 Project Configuration Check IAR Version
uEZ® is built using 9.32.1, or later, of the IAR Embedded Workbench Tool set and C/C++ Compiler. To confirm the
version number of the tools, go to “Help” → “About” → “Product Info” in the toolbar and the version number should
appear in the middle of the dialog.

Opening and Compiling uEZ®
Before the uEZ project can be downloaded and debugged, the uEZ Library needs to be built.

Open the library project file in the \uEZ\Build directory. For example, when working on the uEZGUI-4088-43WQN,
open “\uEZ\Build\Generic\NXP\LPC4088\FreeRTOS\IAR\UEZ_NXP _LPC4088_FreeRTOS_IAR.eww”. The
Project Explorer should appear at the left, showing all the project files.

To compile the code for the first time, select “Project” → “Make” from the toolbar, or press <F7>. When complete,
the output should report “Total number of errors: 0” and “Build succeeded”.

With the uEZ Library built, close “uEZ_NXP_LPC4088_Freestones_IAR.eww”. Now open the uEZ GUI Demo
project: “\uEZDemos\Build\FDI\uEZGUI\uEZGUI-4088-43WQN\IAR\UEZGUI-4088-43WQN.eww”.

As in the uEZ Library project, select “Project” → “Make” from the toolbar, or press <F7>. When complete, the
output should report “Total number of errors: 0” and “Build succeeded”.

Downloading and Debugging uEZ® on the Target

1. Plug the J-Link device into the PC and install any drivers as directed. The Segger J-Link drivers can be found at

http://www.segger.com/cms/jlink-software.html with additional information at

http://www.segger.com/cms/development-tools.html.

http://www.segger.com/cms/jlink-software.html
http://www.segger.com/cms/development-tools.html

2. Plug the J-Link’s JTAG cable into the target (e.g., uEZGUI-4088-43WQN’s J5 connector).

3. Power on the target board.

4. The project is preconfigured for the Segger J-Link. If the J-link software is installed after IAR, the .dll will

automatically be updated. Otherwise run the SEGGER J-Link Updater from SEGGER/J-Link ARM vx.xx in the

start menu.

5. Select “Project” → “Download” and Debug from the toolbar, click the green “Download and Debug” button on

the toolbar, or press + to start debugging.

6. Debugging control can be operated from debug toolbar.

7. Debugging will pause at main(). Press or the white circle with a blue arrow inside it to continue code execution.

8. When finished debugging press the red X in the debug toolbar.

Questions and Support

For all questions, bug reports and general technical support, go to https://sourceforge.net/projects/uez/ and use
the Sourceforge.net tools or email FDI directly at support@teamfdi.com . A support forum is also provided at
https://www.teamfdi.com/forum/ .

Marketing updates and details on technical support are available at https://www.teamfdi.com/uez.

Can we use another RTOS?

Which compiler suites do you support?

Currently, most μEZ® development by FDI has been done on the following tool suites: Rowley Crossworks for
ARM, and IAR EWARM. ARM® RealView, GNU, Keil uVision, and Renesas C/C++ with HEW, KPIT GNU and
other compilers can also be used with μEZ®.

What debug tools are available?

Since μEZ® uses the debug tools that are provided in the customers compiler suite, it can be used with any of
the tools listed above.

Which processors are supported?

Even though μEZ® is processor independent, all of our initial development has been focused on various
members of the ARM Family. We currently support the NXP LPC17xx family, the NXP LPC40xx family, the
NXP LPC43xx family, the Renesas RX6XN, and processors like Cortex™ M3/M4, and other variations of
ARM v7®.

https://sourceforge.net/projects/uez
https://manuals.plus/support@teamfdi.com
https://www.teamfdi.com/forum/
https://www.teamfdi.com/uez

Documents / Resources

FDI LPC1788 Microcontroller-based SOMDIMM module [pdf] User Guide
LPC1788 Microcontroller-based SOMDIMM module, LPC1788, Microcontroller-based SOMDIM
M module, based SOMDIMM module, SOMDIMM module, module

References

 Compare, Download & Develop Open Source & Business Software - SourceForge

 Debug & Trace Probes

 uEZ download | SourceForge.net

 Home - FDI - Future Designs Inc.

 uEZ download | SourceForge.net

 Home - FDI - Future Designs Inc.

 Index - FDI Forums

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/c43211fe87f100d7a96231908d19d0e92e0a37a0d388db6fbb9bbe06a00d0e6f
https://manuals.plus/m/c43211fe87f100d7a96231908d19d0e92e0a37a0d388db6fbb9bbe06a00d0e6f_optim.pdf
http://sourceforge.net
http://www.segger.com/cms/development-tools.html
http://www.sourceforge.net/projects/uez
http://www.teamfdi.com
https://sourceforge.net/projects/uez/
https://www.teamfdi.com/
https://www.teamfdi.com/forum/
https://manual.tools/?p=13926887#MTA0LjI4LjIzNC4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	FDI LPC1788 Microcontroller-based SOMDIMM module User Guide
	Introduction
	Downloading uEZ®
	Project Configuration
	Rowley CrossWorks CrossStudio v4.10.x Project Configuration
	Downloading and Debugging uEZ® on the Target
	Downloading and Debugging uEZ® on the Target
	Questions and Support
	Can we use another RTOS?
	Which compiler suites do you support?
	What debug tools are available?
	Which processors are supported?
	Documents / Resources
	References

