FASELASE D10 2D LiDAR Sensor User Manual Home » FASELASE » FASELASE D10 2D LiDAR Sensor User Manual Model: D10 2D LiDAR **USER MANUAL** ## **QUICK START** Make sure that the USB driver is installed and plug the USB cable into the PC, Connect the device to power supply (+5V±10%, 3A), Run our data acquisition and analysis software, Then select the correct communication port and set the baud rate to 921600bps. Press the start button " " and start to work! (Version V8.01.8) For more info & supports, please visit http://www.top1sensor.com #### **Contents** - 1 Specifications - 2 Dimensional drawing - 3 Installation and connection - 4 Software setting - **5 Communication protocol** - 5.1 Data check algorithm - 5.2 Data analysis algorithm - 6 Trouble shooting - 6.1 Factors affecting the measurement range - 7 Standard and optional accessories - 8 Contact us - 9 Documents / Resources - 9.1 References ## **Specifications** | Items | Parameters | |-----------------------------|---| | Scanning range 1 | 0.15m-10m, 6m@10% | | Measurement error 2 | ±3CM@IOM@I0Hz | | Scanning angle range | 360° | | Angle resolution | 0.28° | | Scanning frequency 3 | 10Hz | | Measurement frequency | 14.28Khz | | Output Interface | TTL | | Distance resolution | 1 cm | | Laser source | Laser diode 905nm, <1mW; comply with GB7247.1-2001
Class 1 Laser Eye Safety Requirements | | Power supply | DC 5V±10%, Power consumption < 3W Starting current > 1.5A | | Volume | 78x78x56 mm | | Operating temperature range | - 10°C- +50°C | | Storage temperature range | – 20°C- +70°C | | Protection level | IP54 | | Weight | 190 g | | Working life | 50,000 hours under standard conditions | #### Notes: - 1. An object with only 10% reflectivity and dark color that can be measured 6m, Kadar white up to 10m - 2. The measurement repeatability accuracy is ±3cm when the measurement range achieves 10m and scanning frequency is 10Hz. 3. The default rotating speed is 10 revolutions per second # **Dimensional drawing** ## 2.1 Rendering ## 2.2 Dimensions ## Installation and connection ## 3.1 Installation ## 3.2.1 Wiring diagram 0123456789 #### 3.2.2 Definitions of 10pin connection cable | Pin | Function | Color | Notes | |-----|----------|--------|----------------------------| | 0 | +5V±10% | Red | DC power supply +5V | | 1 | GND | White | DC power ground | | 2 | Тх | Yellow | Connect to external TTL Rx | | 3 | Rx | Green | Connect to external TTL Tx | | 4 | GND | Black | Connect to internal GND | #### 3.2.3 Power supply Power supply $+5V\pm$ 10%. The starting voltage needs to be 5V, the starting current needs to be 1500mA, the normal working current is 500mA. However the ripple coefficient of the power supply should not be greater than 40mV. The factory setting is that the D10 automatically starts rotating after power-on ### Software setting #### 4.1 Driver installation After the USB driver is successfully installed, connect the Lidar to the computer to confirm that it recognizes the comport, and then turn on the power. If the power is turned on first and then connected, there is a possibility that the computer mouse will be out of control. Please pay attention to the operation sequence. Run the "software exe file" and it can be used normally. Some PC can automatically install the driver after LiDAR connected, if not, please download the CP210X driver in our software package. #### 4.2 Data acquisition To run 'Favelas LiDAR Point Cloud Data Acquisition and Analysis System.exe' program, the communication settings window (see figure 1) will popup. First, select device D10. Second, select serial port number corresponding to the device, the serial port connected to the computer can automatically be identified by the program. Third, select baud rate 921600. Fourth, click 'Yes' to enter the monitoring interface(see figure 2). Baud rate: 921600 bps, Parity bit: None , Data bits: 8 , Stop bit: 1 Figure 1: communication settings window Figure 2: the monitoring interface Figure 3:the measured results of the monitor window Click the save icon to display the number of points detected in the current circle and the distance and angle of each point. Click the right mouse button in the monitor interface to select 'one dimensional display' to observe the real-time data changes of each circle detection. Click the Save icon to start recording the test data, to set the name and path, click OK, to end recording, click the Save button again, click Cancel in the pop-up window to complete the data recording. The recorded data can also be opened by clicking the Open History File button ## **Communication protocol** #### 5.1 Output data format - 5.1.1 Binary output: 4 bytes, including both distance and angle values. - 5.1.2 Each distance test data packet has 4 bytes (labeled A, B, C, and D in sequence., each byte has 8 bits, corresponding to A7,A6,...,A1,A0, B7,B6,...,B1,B0, C7,C6,...,C1,C0.and D7,D10,...,D1,D0. - 5.1.3 The MSBs of the first 3 bytes are 0 (A7, B7, C7), and the MSB of the last byte is 1 (D7), which indicates the end of the data pack. There are 4*7 = 28 bits valid data in each data packet. - A6, A5, A4 of byte A are the check bit. For the specific algorithm, please check the data check algorithm in the next part. - A3, A2, A1, A0, B6, ... B0, C6 are measured distances values (a total of 12 bits), its range is 0~4000cm. - C5...C0, D6,...D0 are measured angle values (a total of 13 digits). Its range is 0~5759, the angular accuracy is 1/16 degree. | Bits | A7 | A6 | A5 | A4 | A3 | A2 | Al | AO | |-------|----|----------|----------|----------|----------|----------|----------|----------| | Value | 0 | Check | Check | Check | Distance | Distance | Distance | Distance | | Bits | B7 | B6 | B5 | B4 | B3 | B2 | B 1 | во | | Value | 0 | Distance | Bits | C7 | C6 | C5 | C4 | C3 | C2 | C 1 | СО | | Value | 0 | Distance | Angle | Angle | Angle | Angle | Angle | Angle | | Bits | D7 | D 10 | D5 | D4 | D3 | D2 | D1 | DO | | Value | 1 | Angle #### Data check algorithm Each character has 8 bits (bit7~bit0), each bit can be 0 or 1. The check bits A6,A5,A4 store the low 3 bit of sum of 1 of B,C,D 3 bytes, when check algorithm, first get the number of '1' in the 3 bytes of B,C,D by looking up the table and then add them up, and then compare the lower 3 bits of the sum with A6,A5,A4, if they are consistent, output the measurement results unsigned char GetCrcPackage4Byte (unsigned char *buf) ``` {. unsigned char B,C,D; ``` B = buf[1]; C = buf[2]; D = buf[3]; //chit is a number table of 1corresponding to 0-255 static unsigned char cubit[256] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,5,6,7, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8, }; return (cubit[B]+cubit[C]+chit[D])&0x07; } return the low 3 digits the sum of 1 in the 3 bytes of B,C,.D #### Data analysis algorithm ``` //buf is a data package pointer, which stores 3 bytes as A, B, C in order. //return distance value, if data check is not correct, return -1 // Int Decode Lase Data(unsigned char *buf) { Int distance; unsigned char cordate = GetCrcPackage3Byte(buf); //unsigned char orgcrc = (buf[0]>>4)&0x07; if(cordate!= (buf[0]>>4)) return -1; ; ``` ``` //calculate the distance. A0,B6..B0,C6...C0 . distance = ((buf[0]\&0x1)<<14)+(buf[1]\&0x7F)<<7)+((buf[2]\&0x7F)); return distance ; } // //buf is a data package pointer, which stores 4 bytes as A, B, C and D in order. //return the distance value, if data check is not correct, return -1 typedef struct{ into distance; Int Angle; }FSDNode; bool DecodeFSD10(FSDNode *nodelist,unsigned char *buf) { unsigned char cordate = GetCrcPackage4Byte(buf);// calculate the low 3 digits the sum of 1 in the 3 bytes of B,C,.D unsigned char orgcrcdata = (buf[0]>>4)&0x07;//get original check A6,A5 A4 if(orgcrcdata!= cordate) return false; unsigned Int distance angle; //calculate distance distance = (buf[0]\&0x0F); distance <<= 7; distance += (buf[1]&0x7F); distance <<= 1; if(buf[2]&0x40) distance ++; novelist->distance = distance; //calculate angle angle = buf[2]&0x3F; angle \ll 7; angle += (buf[3]&0x7F); novelist->Angle = angle; return true; Contact us to get more engineering cases and SDK packages supporting ROS drivers. ``` ### **Trouble shooting** ### Factors affecting the measurement range The D10 is an optical measuring device whose measurement results are affected by environmental factors. Therefore the actual measuring result might be different with typical value which is measured in standard environment. The following factors will effect actual measuring range. | Factors | Affecting result | |----------------------|---| | Multipath reflection | Wrong measurement results may occur when the laser energy returned from other objects exceeds the energy returned from the target | | Transparent surface | Wrong measurement results may occur when the measurement target is colorless liquid s or glasses | | Small object | When the measured object is smaller than the laser spot, or the laser measures the cor ner of the measured object, incorrect measurement results may occur. | ## Standard and optional accessories | No. | Items | Qty | Remarks | |-----|----------------------|------|----------| | 1 | DIO | 1 pc | | | 2 | Data cable | 1 pc | | | 3 | TTL to USB convertor | 1 pc | | | 4 | DC +5V power adapter | 1 pc | Optional | #### Contact us Xi'an Hizon International Trade Co.,Ltd http://www.top1sensor.com Tel: +86-29-87858956 Fax: +86-29-87858956 Moby: +86-13201520716 Mr. Yang E-mail: contact@top1sensor.com Add: No.68 Middle Sector South, Haunching Road, Xi'an, China #### **Documents / Resources** FASELASE D10 2D LiDAR Sensor [pdf] User Manual D10, D10 Bee eyes 360 degree sensor navigation, 360 degree sensor navigation, D10 2D LiDAR Sensor, D10, 2D LiDAR Sensor, LiDAR Sensor, Sensor #### References - <u>Xi'an Zhizun International Trade Co., Ltd. Top1 laser distance sensor supplier from China</u> - Zi'an Zhizun International Trade Co., Ltd. Top1 laser distance sensor supplier from China - User Manual Manuals+,