Espressif ESP32-S2 WROOM 32 bit LX7 CPU User Manual Home » ESPRESSIF » Espressif ESP32-S2 WROOM 32 bit LX7 CPU User Manual #### **Contents** - 1 Espressif ESP32-S2 WROOM 32 bit LX7 - 2 Module Overview - 3 Applications - **4 Pin Definitions** - **5 Electrical Characteristics** - **6 Physical Dimensions and PCB Land Pattern** - 7 Product Handling - 8 MAC Addresses and eFuse - 9 Antenna Specifications - 10 Dimensions - 11 Pattern Plots - 12 Specifications - 13 Gain - 14 Directivity Diagram - 15 Learning Resources - **16 Revision History** - 17 Documents / Resources - 17.1 References - **18 Related Posts** # **ESPRESSIF** Espressif ESP32-S2 WROOM 32 bit LX7 CPU #### **Specifications** MCU: ESP32-S2Hardware: Wi-Fi • Wi-Fi Frequency: 2412 ~ 2462 MHz #### **About This Document** • This document provides the specifications for the ESP32-S2-WROOM and ESP32-S2-WROOM-I module. #### **Document Updates** • Please always refer to the latest version on https://www.espressif.com/en/support/download/documents. #### **Revision History** • For revision history of this document, please refer to the last page. #### **Documentation Change Notification** • Espresso provides email notifications to keep customers updated on changes to technical documentation. Please subscribe at www.espressif.com/en/subscribe. #### Certification • Download certificates for Espressif products from www.espressif.com/en/certificates. #### **Disclaimer and Copyright Notice** Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABIL-ITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG. All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged. Copyright © 2020 Espressif Systems (Shanghai) Co., Ltd. All rights reserved. #### **Module Overview** ## **Features** #### MCU - ESP32-S2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz - 128 KB ROM - 320 KB SRAM - 16 KB SRAM in RTC #### Wi-Fi - 802.11 b/g/n - Bit rate: 802.11n up to 150 Mbps - · A-MPDU and A-MSDU aggregation - 0.4 μs guard interval support - Center frequency range of operating channel: 2412 ~ 2462 MHz #### Hardware - Interfaces: GPIO, SPI, LCD, UART, I2C, I2S, Cam-era interface, IR, pulse counter, LED PWM, USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor - 40 MHz crystal oscillator - 4 MB SPI flash - Operating voltage/Power supply: 3.0 ~ 3.6 V - Operating temperature range: -40 ~ 85 °C - **Dimensions:** (18 × 31 × 3.3) mm #### Certification Green certification: RoHS/REACH RF certification: FCC/CE-RED/SRRC **Test** HTOL/HTSL/uHAST/TCT/ESD #### **Description** - ESP32-S2-WROOM and ESP32-S2-WROOM-I are two powerful, generic Wi-Fi MCU modules that have a rich set of peripherals. They are an ideal choice for a wide variety of application scenarios relating to Internet of Things (IoT), wearable electronics and smart home. - ESP32-S2-WROOM comes with a PCB antenna, and ESP32-S2-WROOM-I with an IPEX antenna. They both feature a 4 MB external SPI flash. The information in this datasheet is applicable to both modules. The ordering information of the two modules is listed as follows: #### **Table 1: Ordering Information** | Module | Chip embedded | Flash | Module dimensions (mm) | | | |-------------------------|---------------|--------|---------------------------------------|--|--| | ESP32-S2-WROOM (PCB) | ESP32-S2 | 4 MB | (18.00±0.15)×(31.00±0.15)×(3.30±0.15) | | | | ESP32-S2-WROOM-I (IPEX) | LO1 02 02 | T IVID | (10.00±0.10)^(01.00±0.10)^(0.00±0.10) | | | #### Notes - 1. The module with various capacities of flash is available for custom order. - 2. For dimensions of the IPEX connector, please see Section 7.3. - At the core of this module is ESP32-S2 *, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. The chip has a low-power co-processor that can be used instead of the CPU to save power while performing tasks that do not require much computing power, such as monitoring of peripherals. ESP32-S2 integrates a rich set of peripherals, ranging from SPI, I²S, UART, I²C, LED PWM, LCD, Camera interface, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB On-The-Go (OTG) interface to enable USB communication. #### Note * For more information on ESP32-S2, please refer to ESP32-S2 Datasheet. #### **Applications** - · Generic Low-power IoT Sensor Hub - · Generic Low-power IoT Data Loggers - · Cameras for Video Streaming - Over-the-top (OTT) Devices - USB Devices - · Speech Recognition - Image Recognition - · Mesh Network - Home Automation - · Smart Home Control Panel - Smart Building - · Industrial Automation - · Smart Agriculture - Audio Applications - Health Care Applications - · Wi-Fi-enabled Toys - Wearable Electronics - · Retail & Catering Applications - · Smart POS Machines #### **Pin Definitions** #### Pin Layout Figure 1: Module Pin Layout (Top View) #### Note The pin diagram shows the approximate location of pins on the module. For the actual mechanical diagram, please refer to Figure 7.1 Physical Dimensions. #### **Pin Description** The module has 42 pins. See pin definitions in Table 2. Espressif Systems **Table 2: Pin Definitions** | Name | No. | Туре | Function | |------|-----|-------|---| | GND | 1 | Р | Ground | | 3V3 | 2 | Р | Power supply | | 100 | 3 | I/O/T | RTC_GPIO0, GPIO0 | | IO1 | 4 | I/O/T | RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0 | | IO2 | 5 | I/O/T | RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1 | | 103 | 6 | I/O/T | RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2 | | 104 | 7 | I/O/T | RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3 | | IO5 | 8 | I/O/T | RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4 | | 106 | 9 | I/O/T | RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5 | | 107 | 10 | I/O/T | RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6 | | 108 | 11 | I/O/T | RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7 | | 109 | 12 | I/O/T | RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD | | IO10 | 13 | I/O/T | RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4 | | IO11 | 14 | I/O/T | RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5 | | IO12 | 15 | I/O/T | RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6 | | IO13 | 16 | I/O/T | RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7 | | IO14 | 17 | I/O/T | RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS | | IO15 | 18 | I/O/T | RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P | | IO16 | 19 | I/O/T | RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N | | IO17 | 20 | I/O/T | RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6, DAC_1 | | IO18 | 21 | I/O/T | RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3 | | IO19 | 22 | I/O/T | RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D- | | IO20 | 23 | I/O/T | RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+ | | IO21 | 24 | I/O/T | RTC_GPIO21, GPIO21 | |------|----|-------|-------------------------| | IO26 | 25 | I/O/T | SPICS1, GPIO26 | | GND | 26 | Р | Ground | | IO33 | 27 | I/O/T | SPIIO4, GPIO33, FSPIHD | | IO34 | 28 | I/O/T | SPIIO5, GPIO34, FSPICS0 | | IO35 | 29 | I/O/T | SPIIO6, GPIO35, FSPID | | IO36 | 30 | I/O/T | SPIIO7, GPIO36, FSPICLK | | IO37 | 31 | I/O/T | SPIDQS, GPIO37, FSPIQ | | IO38 | 32 | I/O/T | GPIO38, FSPIWP | | IO39 | 33 | I/O/T | MTCK, GPIO39, CLK_OUT3 | | IO40 | 34 | I/O/T | MTDO, GPIO40, CLK_OUT2 | | IO41 | 35 | I/O/T | MTDI, GPIO41, CLK_OUT1 | | IO42 | 36 | I/O/T | MTMS, GPIO42 | | TXD0 | 37 | I/O/T | U0TXD, GPIO43, CLK_OUT1 | | RXD0 | 38 | I/O/T | U0RXD, GPIO44, CLK_OUT2 | | IO45 | 39 | I/O/T | GPIO45 | | IO46 | 40 | I | GPIO46 | | Name | No. | Туре | Function | |------|-----|------|---| | EN | 41 | I | High: on, enables the chip. Low: off, the chip powers off. Note: Do not leave the EN pin floating. | | GND | 42 | Р | Ground | #### **Notice** For peripheral pin configurations, please refer to ESP32-S2 User Manual. ## **Strapping Pins** ESP32-S2 has three strapping pins: GPIO0, GPIO45, GPIO46. The pin-pin mapping between ESP32-S2 and the module is as follows, which can be seen in Chapter 5 Schematics: - GPIO0 = IO0 - GPIO45 = IO45 - GPIO46 = IO46 - Software can read the values of corresponding bits from register "GPIO_STRAPPING". - During the chip's system reset (power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. - IO0, IO45 and IO46 are connected to the internal pull-up/pull-down. If they are unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of these strapping pins. - To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-S2. - After reset, the strapping pins work as normal-function pins. Refer to Table 3 for a detailed boot-mode configuration of the strapping pins. **Table 3: Strapping Pins** | VDD_SPI Voltage 1 | | | | | | | | |------------------------|--|---------------------|---------------------|--|--|--|--| | Pin | Default | 3.3 V | 1.8 V | | | | | | IO45 2 | Pull-down | 0 | 1 | | | | | | Booting Mode | | | | | | | | | Pin | Default | SPI Boot | Download Boot | | | | | | 100 | Pull-up | 1 | 0 | | | | | | IO46 | Pull-down | Don't-care | 0 | | | | | | Enabling/Disabling ROM | Enabling/Disabling ROM Code Print During Booting 3 4 | | | | | | | | Pin | Default | Enabled | Disabled | | | | | | IO46 | Pull-down | See the fourth note | See the fourth note | | | | | #### Note - 1. Firmware can configure register bits to change the settings of "VDD_SPI Voltage". - 2. Internal pull-up resistor (R1) for IO45 is not populated in the module, as the flash in the module works at 3.3 V by default (output by VDD_SPI). Please make sure IO45 will not be pulled high when the module is powered up by external circuit. - 3. ROM code can be printed over TXD0 (by default) or DAC 1 (IO17), depending on the eFuse bit. - 4. When eFuse UART_PRINT_CONTROL value is: print is normal during boot and not controlled by IO46. - 1. and IO46 is 0, print is normal during boot; but if IO46 is 1, print is disabled. - 2. nd IO46 is 0, print is disabled; but if IO46 is 1, print is normal. - 3. print is disabled and not controlled by IO46. ## **Electrical Characteristics** ## **Absolute Maximum Ratings** **Table 4: Absolute Maximum Ratings** | Symbol | Parameter | Min | Max | Unit | |--------|----------------------|------|-----|------| | VDD33 | Power supply voltage | -0.3 | 3.6 | V | | TSTORE | Storage temperature | -40 | 85 | °C | ## **Recommended Operating Conditions** **Table 5: Recommended Operating Conditions** | Symbol | Parameter | Min | Тур | Max | Unit | |----------|--|-----|-----|-----|------| | VDD33 | Power supply voltage | 3.0 | 3.3 | 3.6 | V | | IV DD | Current delivered by external power supply | 0.5 | _ | _ | А | | Т | Operating temperature | -40 | _ | 85 | °C | | Humidity | Humidity condition | _ | 85 | _ | %RH | DC Characteristics (3.3 V, 25 °C) Table 6: DC Characteristics (3.3 V, 25 °C) | Symbol | Parameter | Min | Тур | Max | Unit | |-------------|--|------------|-----|------------|------| | CIN | Pin capacitance | _ | 2 | _ | pF | | VIH | High-level input voltage | 0.75 × VDD | _ | VDD + 0.3 | V | | VIL | Low-level input voltage | -0.3 | _ | 0.25 × VDD | V | | 1 <i>IH</i> | High-level input current | _ | _ | 50 | nA | | 1/L | Low-level input current | _ | _ | 50 | nA | | VOH | High-level output voltage | 0.8 × VDD | _ | _ | V | | VOL | Low-level output voltage | _ | _ | 0.1 × VDD | V | | ЮН | High-level source current (VDD = 3.3 V, V _{OH} >= 2.64 V, PAD_DRIVER = 3) | _ | 40 | _ | mA | | IOL | Low-level sink current (VDD = 3.3 V, V _{OL} = 0.495 V, PAD_DRIVER = 3) | _ | 28 | _ | mA | | R <i>PU</i> | Pull-up resistor | _ | 45 | _ | kΩ | | R <i>PD</i> | Pull-down resistor | _ | 45 | _ | kΩ | | VIH_ nRST | Chip reset release voltage | 0.75 × VDD | _ | VDD + 0.3 | V | | VIL_ nRST | Chip reset voltage | -0.3 | _ | 0.25 × VDD | V | #### Note VDD is the I/O voltage for a particular power domain of pins. #### **Current Consumption Characteristics** With the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section RTC and Low-Power Management in ESP32-S2 User Manual. **Table 7: Current Consumption Depending on RF Modes** | Work mode | Description | | | Peak | |----------------------|-------------|--------------------------------------|--------|--------| | | | 802.11b, 20 MHz, 1 Mbps, @ 22.31dBm | 190 mA | 310 mA | | | | 802.11g, 20 MHz, 54 Mbps, @ 25.00dBm | 145 mA | 220 mA | | Active (RF working) | TX | 802.11n, 20 MHz, MCS7, @ 24.23dBm | 135 mA | 200 mA | | Active (111 Working) | | 802.11n, 40 MHz, MCS7, @ 22.86 dBm | 120 mA | 160 mA | | | RX | 802.11b/g/n, 20 MHz | 63 mA | 63 mA | | | | 802.11n, 40 MHz | 68 mA | 68 mA | #### Note - The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 50% duty cycle. - The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle. **Table 8: Current Consumption Depending on Work Modes** | Work mode | Description | | Current consumption (T yp) | |-------------|-------------------------------------|-------------------------------------|----------------------------| | | | 240 MHz | 22 mA | | Modem-sleep | The CPU is pow ered on | 160 MHz | 17 mA | | | | Normal speed: 80 MHz | 14 mA | | Light-sleep | _ | | 550 <i>μ</i> A | | | The ULP co-processor is powered on. | | 220 μA | | Deep-sleep | ULP sensor-monit | tored pattern | 7 μA @1% duty | | Deep-sieep | RTC timer + RTC | memory | 10 <i>μ</i> A | | | RTC timer only | | 5 μΑ | | Power off | CHIP_PU is set to | low level, the chip is powered off. | 0.5 <i>μ</i> A | #### Note - The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle. - When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consump-tion changes accordingly. - In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used. - During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I²C are able to operate. - The "ULP sensor-monitored pattern" refers to the mode where the ULP coprocessor or the sensor works periodi-cally. When touch sensors work with a duty cycle of 1%, the typical current consumption is 7 μA. Wi-Fi RF Characteristics Wi-Fi RF Standards Table 9: Wi-Fi RF Standards | Name | | Description | | |-------------------------------------|--------------------------|--|--| | Center frequency range of operation | ng channel <i>note</i> 1 | 2412 ~ 2462 MHz | | | Wi-Fi wireless standard | | IEEE 802.11b/g/n | | | Data rate | 20 MHz | 11b: 1, 2, 5.5 and 11 Mbps
11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
11n: MCS0-7, 72.2 Mbps (Max) | | | | 40 MHz | 11n: MCS0-7, 150 Mbps (Max) | | | Antenna type | | PCB antenna, IPEX antenna | | - 1. Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software. - 2. For the modules that use IPEX antennas, the output impedance is 50 Ω . For other modules without IPEX antennas, users do not need to concern about the output impedance. #### **Transmitter Characteristics** **Table 10: Transmitter Characteristics** | Parameter | Rate | Unit | |----------------|--------------------|------| | | 802.11b:22.31dBm | | | | 802.11g:25.00dBm | | | TX Power note1 | 802.11n20:24.23dBm | dBm | | | 802.11n40:22.86dBm | | | | | | 1. Target TX power is configurable based on device or certification requirements. #### **Receiver Characteristics** #### **Table 11: Receiver Characteristics** | Parameter | Rate | Тур | Unit | |----------------|----------|-------------|------| | RX Sensitivity | 1 Mbps | - 97 | | | | 2 Mbps | - 95 | | | | 5.5 Mbps | -93 | | | | 11 Mbps | -88 | dBm | | | 6 Mbps | -92 | | ## **Electrical Characteristics** | Parameter | Rate | Тур | Unit | |----------------|-----------------|-----|------| | | 9 Mbps | -91 | | | | 12 Mbps | -89 | - | | | 18 Mbps | -86 | - | | | 24 Mbps | -83 | - | | | 36 Mbps | -80 | - | | | 48 Mbps | -76 | - | | | 54 Mbps | -74 | - | | | 11n, HT20, MCS0 | -92 | - | | | 11n, HT20, MCS1 | -88 | - | | | 11n, HT20, MCS2 | -85 | | | | 11n, HT20, MCS3 | -82 | | | RX Sensitivity | 11n, HT20, MCS4 | -79 | dBm | | • | 11n, HT20, MCS5 | -75 | | | | 11n, HT20, MCS6 | -73 | - | | | 11n, HT20, MCS7 | -72 | - | | | 11n, HT40, MCS0 | -89 | - | | | 11n, HT40, MCS1 | -85 | - | | | 11n, HT40, MCS2 | -83 | - | | | 11n, HT40, MCS3 | -79 | | | | 11n, HT40, MCS4 | -76 | | | | 11n, HT40, MCS5 | -72 | | | | 11n, HT40, MCS6 | -70 | | | | 11n, HT40, MCS7 | -68 | | |----------------------------|-----------------|-----|---------| | | 11b, 1 Mbps | 5 | | | | 11b, 11 Mbps | 5 | | | | 11g, 6 Mbps | 5 | | | BY Maximum Input Lovel | 11g, 54 Mbps | 0 | dBm | | RX Maximum Input Level | 11n, HT20, MCS0 | 5 | - UBIII | | | 11n, HT20, MCS7 | 0 | | | | 11n, HT40, MCS0 | 5 | | | | 11n, HT40, MCS7 | 0 | | | Adjacent Channel Rejection | 11b, 11 Mbps | 35 | | | | 11g, 6 Mbps | 31 | | | | 11g, 54 Mbps | 14 | | | | 11n, HT20, MCS0 | 31 | | | | 11n, HT20, MCS7 | 13 | dB | | | 11n, HT40, MCS0 | 19 | | | | 11n, HT40, MCS7 | 8 | | # **Physical Dimensions and PCB Land Pattern** ## **Physical Dimensions** **Figure 6: Physical Dimensions** Figure 7: Recommended PCB Land Pattern #### **U.FL Connector Dimensions** #### **Product Handling** #### **Storage Condition** - The products sealed in Moisture Barrier Bag (MBB) should be stored in a noncondensing atmospheric environment of < 40 °C/90%RH. - The module is rated at moisture sensitivity level (MSL) 3. - After unpacking, the module must be soldered within 168 hours with factory conditions 25±5 °C/60%RH. The module needs to be baked if the above conditions are not met. #### **ESD** Human body model (HBM): 2000 V Charged-device model (CDM): 500 V • Air discharge: 6000 V • Contact discharge: 4000 V #### **Reflow Profile** Figure 9: Reflow Profile #### **Note** Solder the module in a single reflow. If the PCBA requires multiple reflows, place the module on the PCB during the final reflow. #### **MAC Addresses and eFuse** The eFuse in ESP32-S2 has been burnt into 48-bit mac_address. The actual addresses the chip uses in station and AP modes correspond to mac_address in the following way: • Station mode: mac_address • AP mode: mac_address + 1 There are seven blocks in eFuse for users to use. Each block is 256 bits in size and has independent write/read disable controller. Six of them can be used to store encrypted key or user data, and the remaining one is only used to store user data. ## **Antenna Specifications** #### **PCB Antenna** Model: ESP ANT B **Assembly: PTH Gain:** | Model | Test
Item | Test
State | Frequency
(MHz) | Efficiency
(%) | Gain
(dB) | Note | |----------------|--------------|-----------------|--------------------|-------------------|--------------|---------------------| | | | | 2412 | 73.79 | 2.39 | | | | | | 2417 | 77.04 | 2.97 | 1 | | | | | 2422 | 79.83 | 2.80 | 1 | | | | | 2427 | 81.19 | 2.89 | 1 | | | | | 2432 | 80.54 | 3.04 | | | ESP-ANT B Gain | | Gain Free Space | 2437 | 76.86 | 2.86 | 1 | | | | | 2442 | 76.17 | 2.99 | T | | | Gain | | 2447 | 73.99 | 2.96 | ☐ Vertical
☐ 30° | | | Opuoc | 2452 | 72.00 | 2.80 | | | | | | 2457 | 70.71 | 2.72 | | | | | | 2462 | 71.31 | 2.94 | | | | | | 2467 | 71.32 | 3.12 | | | | | | 2472 | 72.03 | 3.28 | 1 | | | | | | 2477 | 72.71 | 3.24 | | | | | 2482 | 75.42 | 3.40 | | | ## **Dimensions** ## **Pattern Plots** ## **Specifications** | 也且比他有你 自使记引 | ical Specifications | |----------------------------|---------------------| | 频率范围 Frequency Range (MHz) | 2400-2500 | | 频带宽度 Bandwidth (MHz) | 100 | | 输入阻抗 Input Impendence (Ω) | 50 | | 电压驻波比 VSWR | <2.5 | | 增益 Gain (dBi) | >1.0 | | 极化形式 Polarization Type | 垂直极化 Vertical | | | 107 | | 机械指标 Mechanic | cal Specifications | | 天线长度 Antenna Length (mm) | 100mm | | 连接器型号 Connect Type | iPex一代 | | 工作温度 Operatin Temp (°C) | -3070 | | 储存温度 Storing Temp(℃) | -3070 | | 外壳颜色 Radome Color | 黑色 Black | ## Gain | Freq. (WHz) | Effi. | Gain (dBi) | |-------------|-------|------------| | 2400 | 78% | 2.17 | | 2410 | 78% | 2.19 | | 2420 | 79% | 2.31 | | 2430 | 79% | 2.26 | | 2440 | 78% | 2.21 | | 2450 | 79% | 2.33 | | 2460 | 78% | 2.32 | | 2470 | 76% | 2.14 | | 2480 | 75% | 2.05 | | 2490 | 74% | 2.02 | | 2500 | 72% | 1.83 | | Avg. | 77% | 2.17 | #### **Dimensions** ## **Learning Resources** **Must-Read Documents** The following link provides documents related to ESP32-S2. #### • ESP32-S2 User Manual This document provides an introduction to the specifications of the ESP32-S2 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc. #### • ESP-IDF Programming Guide It hosts extensive documentation for ESP-IDF ranging from hardware guides to API reference. #### • ESP32-S2 Technical Reference Manual The manual provides detailed information on how to use the ESP32-S2 memory and peripherals. • Espressif Products Ordering Information #### **Must-Have Resources** Here are the ESP32-S2-related must-have resources. #### ESP32-S2 BBS • This is an Engineer-to-Engineer (E2E) Community for ESP32-S2 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers. #### **Revision History** | Date | Version | Release notes | |------------|---------|---------------------| | 2020-03-10 | V0.5 | Preliminary release | #### **Documents / Resources** #### References - <u>© Certificates | Espressif Systems</u> - Subscribe | Espressif Systems - Wireless SoCs, Software, Cloud and AloT Solutions | Espressif Systems - <u>Subscribe | Espressif Systems</u> - <u>Page Not Found ESP32 — ESP-IDF Programming Guide latest documentation</u> - SP32 Forum Index page - <u>® Documentation Feedback | Espressif Systems</u> - Technical Documents | Espressif Systems - User Manual Manuals+, Privacy Policy