
Home » ESPRESSIF » ESPRESSIF ESP32-S2-MINI-1 Wi-Fi MCU Module User Manual

ESP32-S2-MINI-1 & ESP32-S2-MINI-1U
User Manual

Preliminary version 0.1
Espressif Systems
Copyright © 2020

www.espressif.com

About This Guide

This document is intended to help users set up the basic software development environment for developing
applications using hardware based on ESP32-S2-MINI-1 and
ESP32-S2-MINI-1U modules.

Release Notes

Date Version Release notes

Sep. 2020 V0.1 Preliminary release.

Documentation Change Notification
Espressif provides email notifications to keep customers updated on changes to technical documentation. Please
subscribe at www.espressif.com/en/subscribe.
Certification
Download certificates for Espressif products from www.espressif.com/en/certificates.

ESPRESSIF ESP32-S2-MINI-1 Wi-Fi MCU Module User Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/espressif
https://manuals.plus/espressif/esp32-s2-mini-1-wi-fi-mcu-module-manual.pdf
http://www.espressif.com
http://www.espressif.com/en/subscribe
http://www.espressif.com/en/certi%25EF%25AC%2581cates

Contents
1 Introduction to ESP32-S2- MINI-1 & ESP32-S2-MINI-1U
2 Hardware Preparation
3 Getting Started with ESP32S2-MINI-1 & ESP32-S2MINI-1U
4 Establish Serial Connection with ESP32-S2-MINI-1 & ESP32-S2-MINI-
1U
5 Configure
6 Build and Flash
7 Flash onto the Device
8 IDF Monitor
9 Examples
10 Documents / Resources

10.1 References
11 Related Posts

Introduction to ESP32-S2- MINI-1 & ESP32-S2-MINI-1U

1.1. ESP32-S2-MINI-1 & ESP32-S2-MINI-1U ESP32-S2-MINI-1 and ESP32-S2-MINI-1U are two powerful, generic
Wi-Fi MCU modules that target a wide variety of applications, ranging from low-power sensor networks to the
most demanding tasks, such as voice encoding, music streaming, and MP3 decoding.

Table 1-1. Specifications

Category Parameters Description

Wi-Fi

Wi-Fi protocols 802.11 b/g/n

Operating frequen
cy range 2412 MHz ~ 2484 MHz

Hardware

Peripherals GPIO, SPI, LCD, UART, I2C, I2S, Camera interface, IR, pulse counter, L
ED PWM, USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor

Operating voltage 3.0 V ~ 3.6 V

Operating current
TX: 120 ~ 190 mA

RX: 63 ~ 68 mA

Power supply Minimum: 500 mA

Operating temper
ature –40 °C ~ 85 °C

Storage temperat
ure –40 °C ~ 150 °C

Dimensions (18.00±0.10) mm x (31.00±0.10) mm x (3.30±0.10) mm (with shielding b
ox)

1.2. Pin Description

Figure 1-1. ESP32-S2-MINI-1 Pin Layout (Top View)

Figure 1-2. ESP32-S2-MINI-1U Pin Layout (Top View)

The modules have 65 pins. which are described in Table 1-2�

Table 1-2. Pin Description

Pin
Name No. Type Function Description

GND
1, 2,30
,42,43,
46-65

P Ground

3V3 3 P Power supply

IO0 4 I/O/T RTC_GPIO0, GPIO0

IO1 5 I/O/T RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0

IO2 6 I/O/T RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1

IO3 7 I/O/T RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2

IO4 8 I/O/T RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3

Pin Nam
e No.

9

Type Function Description

IO5 I/O/T RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4

IO6 10 I/O/T RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5

IO7 11 I/O/T RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6

IO8 12 I/O/T RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7

IO9 13 I/O/T RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD

IO10 14 I/O/T RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4

IO11 15 I/O/T RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5

IO12 16 I/O/T RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6

IO13 17 I/O/T RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7

IO14 18 I/O/T RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS

IO15 19 I/O/T RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P

IO16 20 I/O/T RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N

IO17 21 I/O/T RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6, DAC_1

IO18 22 I/O/T RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3

IO19 23 I/O/T RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-

IO20 24 I/O/T RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+

IO21 25 I/O/T RTC_GPIO21, GPIO21

IO26 26 I/O/T SPICS1, GPIO26

NC 27 – NC

IO33 28 I/O/T SPIIO4, GPIO33, FSPIHD

IO34 29 I/O/T SPIIO5, GPIO34, FSPICS0

IO35 31 I/O/T SPIIO6, GPIO35, FSPID

IO36 32 I/O/T SPIIO7, GPIO36, FSPICLK

IO37 33 I/O/T SPIDQS, GPIO37, FSPIQ

IO38 34 I/O/T GPIO38, FSPIWP

IO39 35 I/O/T MTCK, GPIO39, CLK_OUT3

IO40 36 I/O/T MTDO, GPIO40, CLK_OUT2

IO41 37 I/O/T MTDI, GPIO41, CLK_OUT1

IO42 38 I/O/T MTMS, GPIO42

TXD0 39 I/O/T U0TXD, GPIO43, CLK_OUT1

RXD0 40 I/O/T U0RXD, GPIO44, CLK_OUT2

IO45 41 I/O/T GPIO45

Pin Nam
e

No.

44

Type Function Description

IO46 I GPIO46

EN 45 I Hign: on, enables the chip. Low: off, the chip powers off.
Note: Do not leave the EN pin floating

Hardware Preparation

2.1. Hardware Preparation
• ESP32-S2-MINI-1 and ESP32-S2-MINI-1U modules
• Espressif RF testing board
• One USB-TTL serial module
• PC, Windows 7 recommended
• Micro-USB cable

2.2. Hardware Connection

1. Connect ESP32-S2-MINI-1, ESP32-S2-MINI-1U, and the RF testing board, as Figure 2-1 shows.

Figure 2-1. Testing Environment Setup

2. Connect USB -UART serial module to the RF testing board via TXD, RDX, and GND.

3. Connect the USB-UART module to the PC.

4. Connect the RF testing board to the PC or a power adaptor to enable a 5 V power supply, via the Micro-USB

cable.

5. During download, short IO0 to GND via a jumper. Then, turn “ON” the board.

6. Download firmware into flash using the download tool ESP32-S2 DOWNLOAD TOOL.

7. After download, remove the jumper on IO0 and GND.

8. Power up the RF testing board again. ESP32-S2-MINI-1 and ESP32-S2-MINI-1U will switch to working mode.

The chip will read programs from flash upon initialization.

� Notes:

IO0 is internally logic high.

For more information on ESP32-S2-MINI-1 and ESP32-S2-MINI-1U, please refer to ESP32-S2MINI-1 and

ESP32-S2-MINI-1U Datasheet.

Getting Started with ESP32S2-MINI-1 & ESP32-S2MINI-1U

3.1. ESP-IDF
The Espressif IoT Development Framework (ESP-IDF for short) is a framework for developing applications based
on the Espressif ESP32. Users can develop applications with ESP32-S2 in Windows/Linux/macOS based on
ESP-IDF.

3.2. Set up the Tools
Aside from the ESP-IDF, you also need to install the tools used by ESP-IDF, such as the compiler, debugger,
Python packages, etc.

3.2.1. Standard Setup of Toolchain for Windows
The quickest way is to download the toolchain and MSYS2 zip from dl.espressif.com:
https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-g3a626e-
win32.zip

Checking out

Run
C:\msys32\mingw32.exe to open an MSYS2 terminal. Run: mkdir -p ~/esp

Input cd ~/esp to enter the new directory.
Updating the Environment
When IDF is updated, sometimes new toolchains are required or new requirements are added to the Windows
MSYS2 environment. To move any data from an old version of the precompiled environment to a new one:
Take the old MSYS2 environment (ie C:\msys32) and move/rename it to a different directory (ie C:\msys32_old).
Download the new precompiled environment using the steps above.
Unzip the new MSYS2 environment to C:\msys32 (or another location).
Find the old C:\msys32_old\home directory and move this into C:\msys32.
You can now delete the C:\msys32_old directory if you no longer need it.
You can have independent different MSYS2 environments on your system, as long as they are in different
directories.

3.2.2. Standard Setup of Toolchain for Linux Install Prerequisites

CentOS 7� sudo yum install gcc git wget make ncurses-devel flex bison gperf python pyserial pythonpyelftools

Ubuntu � Debian� sudo apt-get install gcc git wget make libncurses-dev flex bison gperf python python-pip python-
setuptools python-serial python-cryptography python-future python-pyparsing pythonpyelftools

https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-g3a626e-win32.zip

Arch� sudo pacman -S –needed gcc git make ncurses flex bison gperf python2-pyserial python2cryptography
python2-future python2-pyparsing python2-pyelftools

Set up The Toolchain
64-bit Linux�https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-
g3a626e-linux-amd64.tar.gz

32-bit
Linux�https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-g3a626e-
linux-i686.tar.gz

1. Unzip the file to ~/esp directory:

64-bit Linux�

mkdir -p ~/esp

cd ~/esp

tar -xzf ~/Downloads/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-linux-amd64.tar.gz

32-bit Linux�

mkdir -p ~/esp

cd ~/esp

tar -xzf ~/Downloads/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-linux-i686.tar.gz

2. The toolchain will be unzipped to ~/esp/xtensa-esp32s2-elf/ directory.

Add the following to ~/.profile: export PATH=”$HOME/esp/xtensa-esp32s2-elf/bin:$PATH”

Optionally, add the following to ~/.profile: alias get_esp32s2=’export PATH=”$HOME/esp/xtensa-esp32s2-

elf/bin:$PATH”‘

3. Re-log in to validate .profile. Run the following to check PATH: printenv PATH

$ printenv PATH

/home/user-name/esp/xtensa-esp32s2-elf/bin:/home/user-name/bin:/home/user-
name/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

Permission issues /dev/ttyUSB0
Failed to open port /dev/ttyUSB0
With some Linux distributions, you may get the Failed to open port /dev/ttyUSB0 error message when flashing the
ESP32. This can be solved by adding the current user to the dialout group.

Arch Linux Users
To run the pre-compiled gdb (xtensa-esp32-elf-gdb) in Arch Linux requires ncurses 5, but Arch uses ncurses 6.
Backward compatibility libraries are available in AUR for native and lib32 configurations:
https://aur.archlinux.org/packages/ncurses5-compat-libs/ https://aur.archlinux.org/packages/lib32-
ncurses5-compat-libs/
Before installing these packages you might need to add the author’s public key to your keyring as described in the
“Comments” section at the links above.
Alternatively, use cross-tool-NG to compile gdb that links against ncurses 6.

3.2.3. Standard Setup of Toolchain for Mac OS
Install pip:
sudo easy_install pip

Install Toolchain: https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-

https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-g3a626e-linux-amd64.tar.gz
https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-g3a626e-linux-i686.tar.gz
https://aur.archlinux.org/packages/ncurses5-compat-libs/
https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/
https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2dev-4-g3a626e-macos.tar.gz

4-g3a626e-macos.tar.gz

Unzip the file into ~/esp directory.

The toolchain will be unzipped into ~/esp/xtensa-esp32s2-elf/ path.

Add the following to ~/.profile:
export PATH=$HOME/esp/xtensa-esp32s2-elf/bin:$PATH

Optionally, add the following to �/ .profile:
alias get_esp32s2=”export PATH=$HOME/esp/xtensa-esp32s2-elf/bin:$PATH”

Input get_esp32s2 to add the toolchain to PATH.

3.3. Get ESP-IDF
Once you have the toolchain (that contains programs to compile and build the application) installed, you also need
ESP32 specific API / libraries. They are provided by Espressif in
ESP-IDF repository. To get it, open the terminal, navigate to the directory you want to put ESP-IDF, and clone it
using git clone command: git clone –recursive -b feature/esp32s2beta https://github.com/espressif/esp-idf.git
ESP-IDF will be downloaded into ~/esp/esp-idf.

Note:
Do not miss the –recursive option. If you have already cloned ESP-IDF without this option, run another command
to get all the submodules: cd ~/esp/esp-idf git submodule update –init

3.4. Add IDF_PATH to User Profile
To preserve the setting of the IDF_PATH environment variable between system restarts, add it to the user profile,
following the instructions below.

3.4.1. Windows
Search for “Edit Environment Variables” on Windows 10.
Click New… and add a new system variable IDF_PATH. The configuration should include an
ESP-IDF directory, such as C:\Users\user-name\esp\esp-idf. Add;%IDF_PATH%\tools to the Path variable to run
idf.py and other tools.

3.4.2. Linux and MacOS
Add the following to ~/.profile: export IDF_PATH=~/esp/esp-idf export PATH=”$IDF_PATH/tools:$PATH”

Run the following to check IDF_PATH: printenv IDF_PATH

Run the following to check if idf.py is included in PAT: which idf.py

It will print a path similar to ${IDF_PATH}/tools/idf.py.
You can also enter the following if you do not want to modify IDF_PATH or PATH: export IDF_PATH=~/esp/esp-idf
export PATH=”$IDF_PATH/tools:$PATH”

Establish Serial Connection with ESP32-S2-MINI-1 & ESP32-S2-MINI-1U

This section provides guidance how to establish serial connection between ESP32-S2MINI-1 and ESP32-S2-
MINI-1U and PC.

4.1. Connect ESP32-S2-MINI-1 and ESP32-S2-MINI-1U to PC

https://github.com/espressif/esp-idf.git

Connect the ESP32 board to the PC using the USB cable. If the device driver does not install
automatically, identify USB to serial converter chip on your ESP32 board (or external converter dongle), search for
drivers in the internet, and install them.
Below are the links to drivers for ESP32-S2-MINI-1 and ESP32-S2-MINI-1U boards produced by Espressif:
CP210x USB to UART Bridge VCP Drivers
FTDI Virtual COM Port Drivers
The drivers above are primarily for reference. Under normal circumstances, the drivers should be bundled with an
operating system and automatically installed upon connecting one of the listed boards to the PC.

4.2. Check Port on Windows
Check the list of identified COM ports in the Windows Device Manager. Disconnect ESP32S2 and connect it back,
to verify which port disappears from the list and then shows back again.

Figure 4-1. USB to UART bridge of ESP32-S2 Board in Windows Device Manager

Figure 4-2. Two USB Serial Ports of ESP32-S2 Board in Windows Device Manager

4.3. Check Port on Linux and macOS
To check the device name for the serial port of your ESP32-S2 board (or external converter dongle), run this
command two times, first with the board/dongle unplugged, then plugged in. The port which appears the second
time is the one you need: Linux

ls /dev/tty*
MacOS
ls /dev/cu.*

4.4. Adding User to dialout on Linux
The currently logged user should have read and write access the serial port over USB. On most Linux
distributions, this is done by adding the user to dialout group with the following command: sudo usermod -a -G
dialout $USER on Arch Linux this is done by adding the user to uucp group with the following command: sudo
usermod -a -G uucp $USER
Make sure you re-login to enable read and write permissions for the serial port.

4.5. Verify Serial Connection

Now verify that the serial connection is operational. You can do this using a serial terminal program. In this
example we will use PuTTY SSH Client that is available for both Windows and Linux. You can use other serial
program and set communication parameters like below.
Run terminal, set identified serial port, baud rate = 115200, data bits = 8, stop bits = 1, and parity = N. Below are
example screen shots of setting the port and such transmission parameters (in short described as 115200-8-1-N)
on Windows and Linux. Remember to select exactly the same serial port you have identified in steps above.

Figure 4-3. Setting Serial Communication in PuTTY on Windows

Figure 4-4. Setting Serial Communication in PuTTY on Linux

Then open serial port in terminal and check, if you see any log printed out by ESP32-S2.
The log contents will depend on application loaded to ESP32-S2.

Notes:

For some serial port wiring configurations, the serial RTS & DTR pins need to be disabled in the terminal

program before the ESP32-S2 will boot and produce serial output. This depends on the hardware itself, most

development boards (including all Espressif boards) do not have this issue. The issue is present if RTS & DTR

are wired directly to the EN & GPIO0 pins. See the esptool documentation for more details.

Close serial terminal after verification that communication is working. In the next step we are going to use a

different application to upload a new firmware to ESP32-S2. This application will not be able to access serial

port while it is open in the terminal.

Configure

Enter hello_world directory and run menuconfig.
Linux and MacOS
cd ~/esp/hello_world
idf.py -DIDF_TARGET=esp32s2beta menuconfig
You may need to run python2 idf.py on Python 3.0.
Windows
cd %userprofile%\esp\hello_world

idf.py -DIDF_TARGET=esp32s2beta menuconfig
The Python 2.7 installer will attempt to configure Windows to associate a .py file with
Python 2. If other programs (such as Visual Studio Python tools) have been associated with other versions of
Python, idf.py may not work properly (the file will open in Visual Studio). In this case, you can choose to run
C:\Python27\python idf.py every time, or change the Windows .py associated file settings.

Build and Flash

Now you can build and flash the application. Run:
idf.py build
This will compile the application and all the ESP-IDF components, generate the bootloader,
partition table, and application binaries, and flash these binaries to your ESP32-S2 board.
$ idf.py build

Running cmake in directory /path/to/hello_world/build
Executing “cmake -G Ninja –warn-uninitialized /path/to/hello_world”…

Warn about uninitialized values.

— Found Git: /usr/bin/git (found version “2.17.0”)
— Building empty aws_iot component due to configuration
— Component names: …
— Component paths: …
… (more lines of build system output)

[527/527] Generating hello-world.bin
esptool.py v2.3.1
Project build complete. To flash, run this command:
../../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash -flash_mode dio –flash_size
detect –flash_freq 40m 0x10000 build/hello-world.bin build
0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/partition-table.bin
or run ‘idf.py -p PORT flash’
If there are no issues, at the end of the build process, you should see generated .bin files.

Flash onto the Device

Flash the binaries that you just built onto your ESP32-S2 board by running:
idf.py -p PORT [-b BAUD] flash
Replace PORT with your ESP32-S2 board’s serial port name. You can also change the
flasher baud rate by replacing BAUD with the baud rate you need. The default baud rate is
460800.
Running esptool.py in directory […]/esp/hello_world
Executing “python […]/esp-idf/components/esptool_py/esptool/esptool.py -b 460800
write_flash @flash_project_args”…
esptool.py -b 460800 write_flash –flash_mode dio –flash_size detect –flash_freq 40m
0x1000 bootloader/bootloader.bin 0x8000 partition_table/partition-table.bin 0x10000 helloworld.bin
esptool.py v2.3.1
Connecting….
Detecting chip type… ESP32
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core
Uploading stub…Running stub…
Stub running…
Changing baud rate to 460800
Changed.
Configuring flash size…

Auto-detected Flash size: 4MB
Flash params set to 0x0220
Compressed 22992 bytes to 13019…
Wrote 22992 bytes (13019 compressed) at 0x00001000 in 0.3 seconds (effective 558.9 kbit/ s)…
Hash of data verified.
Compressed 3072 bytes to 82…
Wrote 3072 bytes (82 compressed) at 0x00008000 in 0.0 seconds (effective 5789.3 kbit/s)…
Hash of data verified.
Compressed 136672 bytes to 67544…Wrote 136672 bytes (67544 compressed) at 0x00010000 in 1.9 seconds
(effective 567.5 kbit/ s)…
Hash of data verified.
Leaving…
Hard resetting via RTS pin…
If there are no issues by the end of the flash process, the module will be reset and the “hello_world” application
will be running.

IDF Monitor

To check if “hello_world” is indeed running, type idf.py -p PORT monitor (Do not forget to
replace PORT with your serial port name).
This command launches the monitor application:
$ idf.py -p /dev/ttyUSB0 monitor
Running idf_monitor in directory […]/esp/hello_world/build
Executing “python […]/esp-idf/tools/idf_monitor.py -b 115200 […]/esp/hello_world/build/
hello-world.elf”…
— idf_monitor on /dev/ttyUSB0 115200 —
— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H —
ets Jun 8 2016 00:22:57
rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57
…
After startup and diagnostic logs scroll up, you should see “Hello world!” printed out by the application.
…
Hello world!
Restarting in 10 seconds…
I (211) cpu_start: Starting scheduler on APP CPU.
Restarting in 9 seconds…
Restarting in 8 seconds…
Restarting in 7 seconds…
To exit IDF monitor use the shortcut Ctrl+].
If IDF monitor fails shortly after the upload, or, if instead of the messages above, you see random garbage similar
to what is given below, your board is likely using a 26MHz crystal. Most development board designs use 40MHz,
so ESP-IDF uses this frequency as a default value.

Examples

For ESP-IDF examples, please go to ESP-IDF GitHub.

Espressif IoT Team www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED AS-IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE,
OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

http://www.espressif.com

All liability, including liability for infringement of any proprietary rights, relating to the use of information in this
document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property
rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark
of Bluetooth SIG.
All trade names, trademarks, and registered trademarks mentioned in this document are the property of their
respective owners and are hereby acknowledged.
Copyright © 2020 Espressif Inc. All rights reserved.

Documents / Resources

ESPRESSIF ESP32-S2-MINI-1 Wi-Fi MCU Module [pdf] User Manual
ESPS2MINI1, 2AC7Z-ESPS2MINI1, 2AC7ZESPS2MINI1, ESP32-S2-MINI-1U, ESP32-S2-MINI-
1 Wi-Fi MCU Module, Wi-Fi MCU Module

References

 Espressif Download Server

 Wi-Fi & Bluetooth MCUs and AIoT Solutions I Espressif Systems

 VCP Drivers - FTDI

 AUR (en) - lib32-ncurses5-compat-libs

 AUR (en) - ncurses5-compat-libs

 dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-linux-

amd64.tar.gz

 dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-linux-

i686.tar.gz

 dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-

macos.tar.gz

 GitHub - espressif/esp-idf: Espressif IoT Development Framework. Official development framework

for Espressif SoCs.

 CP210x USB to UART Bridge VCP Drivers - Silicon Labs

Manuals+,

https://manuals.plus/m/206d0b460cddd69134a468b772e7c7027c2d85a0ccbbec3fc2b5b07fb5a20a7c
https://manuals.plus/m/206d0b460cddd69134a468b772e7c7027c2d85a0ccbbec3fc2b5b07fb5a20a7c_optim.pdf
http://dl.espressif.com
http://www.espressif.com
http://www.ftdichip.com/Drivers/VCP.htm
https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/
https://aur.archlinux.org/packages/ncurses5-compat-libs/
https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-linux-amd64.tar.gz
https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-linux-i686.tar.gz
https://dl.espressif.com/dl/toolchains/preview/xtensa-esp32s2-elf-gcc8_2_0-esp32s2-dev-4-g3a626e-macos.tar.gz
https://github.com/espressif/esp-idf
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://manuals.plus/

	ESPRESSIF ESP32-S2-MINI-1 Wi-Fi MCU Module User Manual
	Introduction to ESP32-S2- MINI-1 & ESP32-S2-MINI-1U
	Hardware Preparation
	Getting Started with ESP32S2-MINI-1 & ESP32-S2MINI-1U
	Establish Serial Connection with ESP32-S2-MINI-1 & ESP32-S2-MINI-1U
	Conﬁgure
	Build and Flash
	Flash onto the Device
	IDF Monitor
	Examples
	Documents / Resources
	References

