Manuals+ — User Manuals Simplified.

EPSON S1C31 Family Self-Modifying Library User Manual

Home » Epson » EPSON S1C31 Family Self-Modifying Library User Manual ™=

EPSON

EXCEED YOUR VISION

S1C31 Family Application Note

S1C31 Family
Self-Modifying Library
Manual

arm

SEIKO EPSON CORPORATION

Evaluation board/kit and Development tool important notice

1. This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or
development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of
design for finished products.

2. This evaluation board/kit or development tool is intended for use by an electronics engineer and is not a
consumer product. The user should use it properly and in a safe manner. Seiko Epson does not assume any
responsibility or liability for any kind of damage and/or fire coursed by its use of it. The user should cease to
use it when any abnormal issue occurs even during proper and safe use.

3. The part used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko
Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to
its application or use in any product or circuit and, further, there is no representation that this material is applicable
to products requiring high-level reliability, such as medical products. Moreover, no license to any intellectual

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/epson
https://manuals.plus/epson/s1c31-family-self-modifying-library-manual.pdf

property rights is granted by implication or otherwise, and there is no representation or warranty that anything
made in accordance with this material will be free from any patent or copyright infringement of a third party. When
exporting the products or technology described in this material, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You are requested
not to use, resell, export, and/or otherwise dispose of the products (and any technical information furnished, if
any) for the development and/or manufacture of weapons of mass destruction or for other

military purposes.

Arm, Cortex, Keil, and pVision are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. IAR Systems, IAR Embedded Workbench, C-SPY, I-jet, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB. SEGGER and J-Link are trademarks or
registered trademarks of SEGGER Microcontroller GmbH & Co. KG. All rights reserved. All brands or product
names mentioned herein are trademarks and/or registered trademarks of their respective companies.
“Reproduced with permission from Arm Limited. Copyright © Arm Limited”

©SEIKO EPSON CORPORATION 2021, All rights reserved.

Contents

1 Overview

2 Library configuration
3 How to Use Library

4 Library Specification
5 Library Specification
6 Appendix

7 Revision History

8 International Sales
Operations

9 Documents / Resources
10 Related Posts

Overview

The S1C31 self-modifying library is a program for rewriting the program code and data in the built-in flash memory
of the target model from the application program. By linking this library to an application program and calling a
function, the flash memory can be erased and written.

This library and sample software are included in the S1C31xxx peripheral circuit sample software package. The
S1C31xxx peripheral circuit sample software package is available on Seiko Epson’s website. In addition to this
manual, please also refer to the “S1C31xxx Technical Manual”.

1.1 Working Environment
The following is required when writing and debugging the sample software.

» Evaluation Board
— S5U1C31xxxTx evaluation board with S1C31 series.
» Debug Probes *1*2
— lAR Systems I-jet or SEGGER J-Link
« Integrated Development Environment
— 1AR Embedded Workbench for ARM®
(IAR EWARM) or MDK-ARM®
(uVision)
« S1C31SetupTool package
— Includes Flash loader and Configuration files (.svd etc).

« S1C31xxx Peripheral circuit sample software package

*1: Debug probes are not required for library function calls from the sample software.
*2: |-jet is available only with IAR EWARM. J-Link is available for both IAR EWARM and MDK-ARM.

For details on the above, refer to the attached manual.

1.2 Precautions for Usage

The S1C31 self-modifying library and sample software are for reference only. Our company will not take any
responsibility for any problems caused by this library. Please thoroughly verify the operation when using this
library for your product.

This manual is common to the self-modifying library provided for each model of the S1C31 series. About the
specifications (Sector information and RAM usage, etc.) that differ depending on the model, refer to the readme

included in the S1C31xxx peripheral circuit sample software package.

Library configuration

2.1 Folder Configuration

The configuration of the S1C31 self-modifying library, sample software, and related programs included in the

S1C31xxx peripheral circuit sample software package is as follows.

S1C31xxxSamplePKG_very yy.zip
[$1C31xxxSamplePKG_very yy]

|- [Licenses]

|- [Drivers] : Drivers

|- [board] : Evaluation board related driver
|- [CMSIS] : CMSIS driver

|- [Device]

| |- [S1C31xxx]

| |- [Include]

| | |-81C31xxx.h : CMSIS peripheral circuit access layer header file
I [CRe

| |- [Source]

I |- [ARM]

I - [IAR]

| | |- startup_S1C31xxx.s : CMSIS sartup program

| |- system_S1C31xxx.c : CMSIS peripheral circuit access layer header program
|- [Driver]

| |- [Include]

| | |- Driver_Common.h : Common driver definition

| | |- Driver_Flash.h : CMSIS self-modifying library driver definition

[I

| |- [Source]

|- [SVD]

[sePeripherallibrary] : Peripheral circuit library

[Middlewares] : Middlewares
|- [seEepromLibrary] : Self-modifying library

|- [Device]
| |- [S1C31xxx]
|- seFlashLibraryS1C31xxx.a : Library for IAR EAWRM
|- seFlashLibraryS1C31xxx_lib : Library for MDK-ARM
- flashLibraryForS1c31xx¢_readme_e.txt : readme
- flashLibraryForS1c31xxx_readme_j.txt

[Projects] : Sample softwares
[Applications] : Various application software

|- [FLASH] : Sample software for Self-modifying library
| |- [ARM] : Project for MDK-ARM
| - [IAR] : Project for IAR EWARM
| |- main.c
|- ...

README_e.txt
README_j.txt

Figure 2.1.1 S1C31xxx Sample software package configuration

2.2 Library function

The functions provided by this library are defined in Drivers¥CMSIS¥Driver¥Include¥ Driver_Flash.h. The
functions provided by this library are as follows.

Table 2.2.1 Functions provided by this library

Function name Functional overview

int32_t Initialize (ARM_Flash_SignalEvent_t cb_event) Initialization of this library

Restore the settings before initialization of th

int32_t Uninitialize (void) is library

int32_t EraseSector (uint32_t addr) Erase built-in flash memory

int32_t ProgramData (uint32_t addr, const void *data, uint32_t ¢

nt) Write built-in flash memory

int32_t ReadData (uint32_t addr, unsigned char *data, int32_t cn
t)

Read built-in flash memory

ARM_DRIVER_VERSION GetVersion (void) Get this library version

ARM_FLASH_INFO * Getlnfo (void) Get information on built-in flash memory

The verify function is also built into the ProgramData and EraseSector functions.

How to Use Library

1. Explains how to use the S1C31 self-modifying library and sample software.
3.1 How to Use Library in Application Program
This section describes how to use this library on the application program. For how to incorporate the library into
the project of an application program, refer to “Appendix x. How to Incorporate Library into Project.”
2. Declaration of Header File
Include “Driver_Flash.h” in the source file that uses this library.
/* include */
#include <stdio.h>
#include <string.h>
#include “Driver_Flash.h”
3. Add function

Add the functions provided by the library to the source file that uses this library. About the function
specifications, refer to “Chapter 4 Library Specifications”.

extern _ ARM DRIVER FLASH Driver Flash:

int main(void)

{
unsigned char compbuf[16]: 1 pjgable interrupts in peripheral
//disable Interrupt /
asm("CPSID 1"}

ARM FLASH INFO *Info = Driver_Flash.GetInfo();

Driver_Flash.GetVersion(); Library initialization (initialization of peripheral circuits

P to be used)
/Mmtialize
Driver Flash.Initialize(NULL);

J/Erase at 0x1D000 / Erase built-in flash memory
if (Driver Flash.EraseSector(0x1D000)==ARM DRIVER OK)

{
printf{"Erase: OK¥n"); Write built-in flash memory
4

/Write at 0x1D000
if (Driver Flash.ProgramData(0x1 D000, updateLineBit, 16

{
rintf{"Program: OK¥n");
E’Reuil at [}ﬁ[D(}{m : / Read built-in flash memory
Driver_Flash.ReadData(0x1D000, compbuf, 16);
if (mememp(updateLineBit, compbuf, 16) ==0) {
printf{"Verify: OK¥n"):
| else |
printf{"Verify: NG¥n"):
i
i
}else §
printf{"Program: NG¥n");

1
|

RM_DRIVER OK)

1 else {

printf("Erase NG¥n");
1
¥

printf("Exit¥n");

//Uninitialize Restore the settings before initialization of this library
Driver Flash.Uninitialize()

/ fcnab]cnlntcrrup‘t' - Enable interrupts in peripheral circuits

return 0;

3.2 Internal RAM Usage
This library uses an internal RAM area. About the RAM usage of the self-modifying library of each model, refer to

the readme included in the S1C31xxx peripheral circuit sample software package.

3.3 Precautions for Using Library
When using this library, be careful about the followings:

« Disable interrupts before using the functions provided by this library.
« Do not destruct the area where the library is laid out while executing this library.
« When using this library, be aware of the rewritable count of flash memory. For information about flash memory

specification, refer to the corresponding “S1C31xxx Technical Manual”.

« When using this library, stop all peripheral circuits. This library works as follows:
1. The S1C31D01/S1C31D5x/S1C31W74 uses 16bit timer (T16) ch.0. Therefore, the register of the 16bit timer,
ch.0 is changed. Be aware when the application program uses the 16bit timer.
2. The system clock is changed to a High-Speed clock (OSC3 or IOSC) in using the library. Be aware when a
program uses CLG Control Register in using the library.

« About the specifications (Sector information and RAM usage, etc.) that differ depending on the model, refer to
the readme included in the S1C31xxx peripheral circuit sample software package.

« When using this library, connect a capacitor to the Vpp pin as shown in the basic external connection diagram

in “S1C31xxx Technical Manual”, and disconnect the connection between the Vpp pin and other pins.
3.4 Sample Software

1. Sample Software Specification
In this sample software, this library is used to erase the sector at address 0x1D000 and then write 16 bytes.
2. Preparation
For details on how to execute this sample software project, refer to the “S1C31xxx Peripheral Circuit Sample
Software Manual”.
3. Operations Overview
(1) Disables interrupts in peripheral circuits.
(2) Get the information on the internal flash memory. (Optional)
(3) Get the version of this library. (Optional)
(4) Initialize this library. (Initialization of peripheral circuits used)
(5) Erase in internal flash memory (0x1D000).
(6) Write the update data updateLineBit[] (16byte) to internal flash memory (0x1D000).
The data of 0x1D000 after rewriting is as follows.
OF OE 0D 0C 0B OA 09 08 07 06 05 04 03 02 01 00
(7) Read the internal flash memory (0x1D000).
(8) Compare the read data cmpbuf [] with the update data updateLineBit [] and display the result.
(9) Restore the settings before the initialization of this library.
(10) Enables interrupts in peripheral circuits. (Optional)

Library Specification

4.1 Library Function Details
The details of the functions provided by this libra are described below.

Function Name

int32_t Initialize (ARM_Flash_SignalEvent_t cb_event)

Argument

cb_event ARM_Flash_SignalEvent_t Normally set to NULL

Return Value

int32_t ARM_DRIVER_OK (0)

Function

Initialize the peripheral circuits used in this library.

(1) Change the system clock
(2) Initialize of T16 Ch.0 (S1C31D01/S1C31D5x/S1C31W74 only)

Remarks

Disable interrupts in peripheral circuits before using this function.

Function Name

int32_t Uninitialize (void)

Return Value

int32_t ARM_DRIVER_OK (0)

Function

Restore the settings before initialization with the Initialize function. (1) Set T16 Ch.0
(S1C31D01/S1C31D5x/S1C31W74 only)

(2) Change the system clock

Remarks

If necessary, allow interrupts in peripheral circuits after using this function.

Function Name

int32_t EraseSector (uint32_t addr)

Argument

addr uint32_t Start address of erase sector

Return Value

int32_t Erase result (error code)

Function

Erase the internal flash memory.

(1) Check that the argument is less than or equal to the final address of the internal flash memory.
(2) Check if the erased sector has been erased (0xffff).

(8) When (2) is not erased, the sector is erased.

(4) When erasing is executed in (3), check whether the erase destination sector has been erased (0xffff). (Ve

(5) Returns the erasure result.

Remarks

Library Specification

1. Erasing of this function is “one sector” units. To erase multiple sectors, call this function multiple times.
2. Disable interrupts in peripheral circuits before using this function.
3. Specify the start address of the sector in the argument. If you specify an address other than the start address of

the sector, a verification error may occur.

4. For sector information, refer to the readme included in the S1C31xxx peripheral circuit sample software

package.

Function Name

int32_t ProgramData (uint32_t addr, const void *data, uint32_t cnt)

Argument
addr uint32_t Write address.
Write data.
- Represents a pointer to the written data. The pointer should
data const void .
point to the RAM space.
cnt uint32_t Write data size.

Return Value

uint32_t

Write result (error code)

Function

Write the internal flash memory.

(2) Write data to the specified write address.

(4) Returns the writing result.

(1) Check that the argument is less than or equal to the final address of the internal flash memory.

(3) Check if the written address is written data. (Verify)

Remarks

1. Writing of this function is in “byte (8bit)” units.

2. ltis assumed that the writing destination has been erased (0xffff).

3. Disable interrupts in peripheral circuits before using this function.

Function Name

int32_t ReadData (uint32_t addr, unsigned char *data, int32_t cnt)

Argument

addr uint32_t Read address.
Read data.

data const void * Represents a pointer to the read data. The pointer should poi
nt the RAM space.

cnt uint32_t Read data size.

Return Value

uint32_t ARM_DRIVER_OK (0)

Function

Read the internal flash memory.
(1) Check that the argument is less than or equal to the final address of the internal flash memory.
(2) Read to the specified read address.

(3) Returns the reading result.

Remarks

1. Reading of this function is in “byte (8bit)” units.

2. Disable interrupts in peripheral circuits before using this function.

Function Name

ARM_DRIVER_VERSION GetVersion (void)

Return Value

ARM_DRIVER_VERSION

Version of this library

Function

Get a version of this library

Remarks

None.

Function Name

ARM_FLASH_INFO * GetInfo (void)

Return Value

ARM_FLASH_INFO * Information of the internal flash

Function

Get information on the internal flash.

« Sector number

« Sector size

Remarks

None.

4.2 Error Code Definition
The error code used in the return value of each function is as follows.
Table 4.2.1 Error Code

Definition Name Value Description
ARM_DRIVER OK 0 Successful completion
ARM_DRIVER_ERROR_TIMEOUT -3 Time out / Verify error
ARM_DRIVER_ERROR_UNSUPPORTED -4 Unsupported operation
ARM_DRIVER_ERROR_PARAMETER -5 Argument error

These are defined in “Drivers¥CMSIS¥Driver¥Include¥Driver Common.h”.

Appendix

A. How to Incorporate Library into Project (IAR EWARM)
The method of incorporating this library into the project of the application program created by IAR EWARM is
described below. For more information on IAR EWARM, please refer to the attached manual.

1. Add Library
(1) Select [Project]> [Options] from the IAR EWARM menu.
(2) Select [Linker] from the [Category] list in the displayed dialog.

(3) From the [Library] tab, add this library included in the S1C31xxx peripheral circuit sample software package
to “Additional libraries”.

Middlewares¥seFlashLibrary¥Device¥S1C31xxx¥seFlashLibraryS1C31xxx.a

< Flash - IAR Embedded Workbench IDE - Arm Options for node “Flash®

File Edit View Project J-Link Tools Window Help
X] [) i - - L /
NARE & %K. 0cC 00 | comn e
Workspace * 0 X | mainc x actos
General Options L]
Debugflash - — Static Analysis
= e Runtime Checking
FI_;ES B 0 T e CC++ Compiler #define Diagnostics Checksum Encodings Extra Options
[l(;él Sh -DebuqFMSh Assembler (5 Library Input Optimizations Advanced Output List
oarn
I_E o CHSIS Mak Qutput Converter Linker configuration file
= 2 - ake)
|-@ o sePeripheralLibrary i b Custom Build Eoverride default
& main.c L b Build Actions - -
[Output Rebuild All ' (4) | $PROJ_DIR$¥config¥51C31D01_fp_flash.icf |D
Clean F Debugger
Simulator Edit...
C-STAT Static Analysis > I CADI
Ston Build CMSIS DAP Configuration file symbeol definitions: (one per line)
top Build
} N GDB Server
Add 5 Iet
Jink/)-Trace
e ¢ T1 Stellaris
Rename... Nu-Link
2
FE
Version Control System >k mee
ST-LINK
I Flash Open Containing Folder... El:\jfﬁrrf?rDri‘-H v
Debug Log File Properties...
Set as Activ
| Log Set as Active
Cancel

Figure A.3 Set linker script

2. Add include path
(1) Select [Project]> (1) IAR EWARM menu [Project]> [Options] from the IAR EWARM menu.
(2) Select [C / C++ Compiler] from the [Category] list in the displayed dialog.
(3) From the [Preprocessor] tab, add the following include path of the driver definition included in the S1C31xxx
peripheral circuit sample software package to the “Additional include directory”.
Drivers¥CMSIS¥Driver¥Include

< Flash - AR Embedded Workbench IDE - Arm

Options for node "Flash”

File Edit View Project J-link Tools Window Help

NOE@ = XK oC -l£ Q2 —
Waorkspace ¥ 8 X | mainc x ; ‘ - Factory Settings
General Options a | | [IMultifile Compilation
DebugFlash e — Static Analysis Discard Unused Publics
I O . e/ Runtime Checki :)
8 ;29 ““““““ (2) m MISRA-C:1998 Encedings Extra Options
[I—El DEbuqFlﬂSh Assouiier Language 1 Language 2 Code Optimizations Output
= List (3 ﬂ Diagnostics MISRA-C:2004
M CMSIS . Make Output Cnr\verher (3) ag)
W sePeripheralLibrary i] Custom Euild
@ B mainc Compile h Build Actions [Jignore standard include directories
lema Output Rebuild All i Linker Additional include directories: (one per line)
E ;
Clean Debugger $TOOLKIT_DIR$¥inc¥Epson¥ ~ E
X X Simuiator $PROJ_DIRS¥. ¥ X% ¥Drivers¥CMSIS¥Device¥51031D01¥Include
EALI N IES 1 cADL $PROJ DIRS¥. ¥, ¥. ¥. ¥Drivers¥CMSIS¥Driver¥include¥
. » CMSIS DAP $PROJ_DIRS¥, ¥Drivers¥sePeripheralLibrary¥
stop Builc
0B Server $PROJ_DIRS¥.. ¥Drivers¥board¥S5U1C31D01T1¥ v
Add * Tjet Preinclude file:
o J-Link/)-Trace [
emave ¢ T1 Stellaris
Renam Nu-Link Defined symbols: (one per line)
P P t] fill
Version Control System >k PEmicro S1c31D01 o rePrDressor output toiE
1 STLINK Preserve comment
Flash Open Containing Folder... Third-Party Driver Generate Zline directives
Debug Log File Properties...
‘ Log Set as Active
Cancel

Figure A.2 Add include path

3. Set linker script
(1) Edit the linker script file (.icf) included in the project.

(2) S1C31xxx Peripheral circuit sample software package Add the following section by referring to the sample
software linker script file (S1C31xxx_fp_flash.icf) included in the package.

/*###ICF### Section handled by ICF editor, don't touch! ****/

initialize by copy { readwrite };

Generate flash_common_tex section

initialize manually with packing = none { section .flash common_text};

//initialize by copy with packing = none { section _DLIB PERTHREAD }; // Required in a multi-threaded
application

do not initialize { section .noinit };

place at address mem: ICFEDIT intvec start { readonly section .intvec };

place in ROM region { readonly };
place in RAM region { readwrite,
block CSTACK, block HEAP };

Specifying the copy source section of the
ROM area

place in ROM region { section .flash common_text 4nit}; Specifying the copy destination section of the
place in RAM region { section .flash common_text .}-r"/'- RAM area

Add the above and place the code of this library in the RAM area.

(3) Select [Project]> [Options] from the IAR EWARM menu.

(4) Select [Linker] from the [Category] list in the displayed dialog.

(5) Check “Override default ” from the [Config] tab and specify the edited linker script file.

< Flash - IAR Embedded Workbench IDE - Arm Options for node "Flash”

File [Edit View Project J-link Tools Window Help
N O RE e X R C Qs _
D Factory Sei
Workspace » 0 X | mainc x L
General Options A
Debugflash e Static Analysis
i =i Runtime Checki
F,';ES L ||| YT Cleas cOmml:rg #define Diagnostics Checksum Encodings Extra Options
[lt;él Sh DebuqHGSh 1 Assembler (5 Library Input Optimizations Advanced Output List
oar
l_E B CH3SIS Mak Output Converter Linker configuration file
1 - . aKe
|-@ W sePeripheralLibrary - Custom Build Edoveride default
@ B mainc gz Buid Actions :
La & Outout Rebuild Al . @) [$PROJ_DIR$¥config¥51C31D01_fp._flash.ict |D
Clean h Debugger -
Simulator Edit.
C-STAT Static Analysis » I CADI
Stop Build CMSIS DAP Configuration file symbol definitions: (one per line)
ok GDB Server
Add > Iet
JHink[)-Trace
ez I Stellaris
Rename... Nu-Link
PE
Version Control System] mere
STHINK
Flash Open Containing Folder... Third-Party Driver v
Debug Log File Properties...
| Log Set as Active
Cancel

Figure A.3 Set linker script

B. How to Incorporate Library into Project (MDK-ARM)
The method of incorporating this library into the project of the application program created MDK-ARM (uVsion) is
described below. For more information on MDK-ARM, please refer to the attached manual.

1. Add Library
(1) Right-click the target source folder from the [Project] window of uVision and select [Add Existing Files to
Group ‘xxx’...].
(2) From the displayed dialog, add this library included in the S1C31xxx peripheral circuit sample software
package below.
Middlewares¥seFlashLibrary¥Device¥S1C31xxx¥seFlashLibraryS1C31xxx.lib

File Edit View Project Flash Debug Peripherals Tools
Y1 IEEY |«=rrmn
£ B8 &~ 14| %8| DebugFiash v &|

= ‘% Project: flash

= #3 DebugFlash
(} “x ,l:\ Options for Group ‘SRC ... Alt=F7

{ Add New Item to Group SRC'...
1 Add Existing Files to Group 'SRC'...

B Remove Group ‘SRC and its Files
® LA boal
@Gl sePq [*¥] Rebuild all target files
& M L2 Build Target F7

EEE

dh Manage Project items...

v | Show Include File Dependencies

=] Project |6Eu-:~c\l-.s {} Functions | (), Templates
Figure B.1 Add library

2. Add include path
(1) Select [Project]> [Options for Target ‘xxx’...] from the uVision menu.
(2) Browse to the folder from [C / C ++]> ‘Include Paths’ in the displayed dialog.
(3) From [New (Insert)], add the following include path of the driver definition included in the S1C31xxx
peripheral circuit sample software package.
Drivers¥CMSIS¥Driver¥Include

kA %) Options for Target ‘DebugFlash’) x
et (1) [Bjea] rsn eoug peripnera Device | Tareet | Output | Listing | User [G7C++ | Asm | Linker | Debu | Ltiities |
..J - “ New p\Vision Project...
Ry New Multi-Project Workspace.., Preprocessar Symbola
Open Projed... Defre |S1CJ‘| xxx
Project
S Pl Undefne: |
248 Debugfl Bport Language / Code Generaton
5 SRC Manage I™ Exscute-only Code I Strict ANSIC Wamings: [Al Wamings =
s Select Device far Target Optimization: [Level 0 (00) v ™ Enum Container always int [
dr Eemcue Koh ™ Optimize for Time [™ Plain Charis Sgned ™ No Auto Includes
j:l‘ﬁ Options for Target ‘DebugFiash ™ Spiit Load and Store Muliiple ™ RAead-Only Position independant W C%5 Mode
[~ One ELF Section per Function ™ Read-Wrte Postion independent ™ GNU extensions
#l Ll boar Clean Targets
. ;‘ 5€Pe [Bild Target h;f“ |...u.v.=r. ¥Drivers¥board¥S5U1C3 1xxxT1. ¥_¥_¥ ¥Drivers¥CMSIS¥Device¥S1C31 u:&hdl.ﬂe..l,,l
CMS
£ Rebuild all target files Mise I
& Baten Build .
€ Batch Setup Compiler |99 ¢ —cpu Cortex-M0+ -D__EVAL i g 00 -apcs=interwork -| .. 1
control |../.././. /Drivers/board/SSUTCI wxx T1 4 .././. /. /DeversTMSIS Device/5 1C 3 hoo /include
Transiate... string
Stop build
I 0K I Cancel Defaults Help
Folder Setup) X
Setup Compler nckude Pats: o [C]x 1+ +

I 0K I Cancel

Figure B.2 Add include path

3. Set linker script
(1) Edit the linker script file (.sct) included in the project.
(2) Add the following section by referring to the linker script file (flash_flash.sct) of the sample software included

in S1C31xxx Peripheral circuit sample software package.
L P e Pl S e R R e
*

; #%* Scatter-Loading Description File generated by uVision ***
R R e P P R
*

RW IRAMI 0x00150000 { ;RW data
ANY (+RW +ZI)

t

RW IRAM2 +0 { ;RW data Generate flash_common_text section in RAM area
*(.flash_common_text)

}

(3) Select [Project]> [Options for Target ‘xxx’...] from the uVision menu.
(4) Specify the linker script file edited from [Linker]> ‘Scatter File’ in the displayed dialog.

File Edit \(3) Flash Debug Peripherals

Options for Target ‘DebugFlash’

(4)

Device | Target | Qutput | Listing | User | G/G++ | Asm Debug | Utiities |

—— .
| &5 A @ | Newuvision Project.. I Use Mamary Layout from Target Dt o [
- New Multi-Project Workspace... _ _
ks 1 [~ Make RW Sections Postion Independent R/O Base: |
Open Project...)) :
Project . o [Make RO Sections Position Independent RAW Base
| ject |
2 % Project: flas) = I~ Dont Search Standard Libraries
£ {5 DebugFl Export ¥ Repot might fail' Condtions as Erors dsable Wamings: |
=& SRC Manage
j : Select Device for Target ... ‘ —
D) | Renove ten ter [Fiod foshoc AL e |
) {4\ OptionsforTarget ‘DebugFiash...
@ [boar Clean Targets Misc
® ""‘ sePe (%1 Build Target controls
i [¥4] Rebuild all target files e s =
& Batch Build c::r: -strict ~scatter * ¥flash_flash sct” .
€ Batch Setup...
Translate...
[Stop build I oK I Cancel Defaults Help |

Revision History

Figure B.3 Set linker script

Rev. No. | Date Page

Category

Contents

Rev 1.0 | Apl.30,2021 | All

new

New establishment

International Sales Operations

America
Epson America, Inc.
Headquarter:

3131 Katella Ave., Los Alamitos, CA 90720, USA
Phone: +1-562-290-4677San Jose Office:
214 Devcon Drive
San Jose, CA 95112 USA
Phone: +1-800-228-3964 or +1-408-922-0200

Seiko Epson Corp.
Sales & Marketing Division
Device Sales & Marketing Department
29th Floor, JR Shinjuku Miraina Tower, 4-1-6 Shinjuku,
Shinjuku-ku, Tokyo 160-8801, Japan
Document Code: 414177600
First Issue May 2021 in JAPAN
S1C31 Series Self-Modifying
Library Manual
(Rev.1.0)

Documents / Resources

$1C31 Family
Self-Modifying Library
Manual

EPSON S1C31 Family Self-Modifying Library [pdf] User Manual

S1C31 Family Self-Modifying Library

Manuals+,

https://manuals.plus/m/f0956598527336c81fec49236fca6cec04f2df7cc078a97ff1a1f4139a8f6b81
https://manuals.plus/m/f0956598527336c81fec49236fca6cec04f2df7cc078a97ff1a1f4139a8f6b81_optim.pdf
https://manuals.plus/

	EPSON S1C31 Family Self-Modifying Library User Manual
	Overview
	Library configuration
	How to Use Library
	Library Specification
	Library Specification
	Appendix
	Revision History
	International Sales Operations
	Documents / Resources

