
☰

Home » ELPRO » ELPRO 415U-2 Long Range Wireless Ethernet I p and Gateway Instruction

Manual

Contents [hide]

1 ELPRO 415U-2 Long Range Wireless Ethernet I p and Gateway

2 Product Information

3 Overview

4 Logic Page

5 Operations

6 Use a Timer Function to de-bounce two digital inputs

7 Logic Arguments

8 FAQ

9 Documents / Resources

9.1 References

ELPRO 415U-2 Long Range Wireless Ethernet I p and Gateway

 Manuals+

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/elpro
https://manuals.plus/elpro/415u-2-long-range-wireless-ethernet-i-p-and-gateway-manual.pdf

Product Information

Specifications

Product Name: I/O Plus Logic

Compatible with Wireless I/O products: 415U-2, 415U-E, 925U-2, 215U-E, 115E-2

Cycle Time: 250msec

Maximum Instructions per Device: 300

I/O Plus (Logic) – Instruction and Examples

Overview

This document explains the feature set of the “I/O Plus” logic which is available in some

of the Wireless I/O products, notably the 415U-2, 415U-E, 925U-2, 215U-E and 115E-2.

I/O Plus is made available to perform logic tasks to users in the available wireless

products and is not intended on being utilised as a PLC or RTU replacement.

Configuration for the logic is performed via the module’s internal webpages.

The cycle time for the IO plus is fixed at 250msec with a maximum of 300 instructions

per device

Logic Page

Select “IOPlusLogic” from the right hand side menu to see the Logic Configuration

Screen..

You should then see a screen like below

First you must enable the logic function by ticking the box “Enabled”

Then add/remove operational entries by clicking the Add, Insert, Delete buttons.

The configuration is made up of a list of statements and each statement has a number

of configurable column entries, i.e. Operation, Immediate Value, Negate Operation, “{“

Bracketed Block, Value/Register Values and Notes/Comments.

Configuration

The device executes a software process that reads and performs the actions

programmed in the statement list. The statements in the list are executed by this process

in the defined order until the end of the list is reached. The logic process then waits until

it is time to begin the next execution cycle, and again executes the statements in the list.

This execution cycle is repeated again and again while the device is operating.

The statement list can include branch instructions which cause the control flow to follow

a different path, so every statement in the list will not necessarily be executed on each

execution cycle. It is also possible to develop looping constructs within the statement list,

so a group of instructions could be executed multiple times during one execution cycle.

Care must be taken to ensure that any loops will terminate in time so that the execution

of the Statement list will not exceed the maximum allowed cycle time.

The Logic engine aims to execute the full statement list once every 0.25 Sec. This is the

cycle time. Each execution of the statement list has a deadline that is 1.25 seconds after

the target completion time. If the execution cycle does not complete before the deadline,

the execution of the cycle is aborted. When this happens, the Diagnostic register is set

to the value 32768. This means that you can rely on timers being no more than 1.25

second late as long as the Diagnostic register doesn’t indicate overrun. The Logic

engine is designed to be capable of executing up to 1000 instructions without exceeding

the deadline.

Diagnostic Register 30491

Value Meaning

0
Logic program not running (Logic execution not Enabled or “Default” switc

h is ON)

256 Logic program has started execution and is executing.

32768

Logic program has failed to complete executing the full statement list withi

n the deadline and has aborted that execution cycle of the statement list. (

at least once)

You can view the content of this register from the page at “Unit Diagnostics >> I/O

Diagnostics”.

Configuration

The process uses a statement list to perform the various calculations and processes.

Each instruction will perform the configured operation and then the result will be saved

back to the accumulator. E.g. if we “Load” a register into the accumulator and perform an

operation i.e. “GT” Greater-Than a

Value/Register, the accumulator will then become the result of this instruction, i.e. it will

hold a “1” if the operation was True or “0” if it was False.

The configuration parameters are explained below

Operations

There are a number of configurable operations and each one will perform a specific

task, whether it be loading a value, storing a value, applying some sort of logical or

mathematical operation or applying some other operational instruction, i.e. Jumping ,

setting or calling.

A full list of all of the operations and brief explanation of how it works will be at the end

of the document.

“I” (Immediate)

When selected the instruction will use either the value or the register location that is

entered into the “Value/Register” column.

“N” (Negate)

When selected this allows the operation to be negated (opposite). i.e. Selecting “GT”

(Greater Than) and also selecting the “N” will mean the operation will become “Not

Greater Than”

“{“ (Starts a new Block)

Allow you start a new function block. You can have Sub blocks nested within the

statement list.

Value /Register

The value or register location that will be used by the operation.

Notes and comments

Notes or comments that help to explain the logic operation and configuration.

Note:

Configurations can be saved once they have been entered into the Web page table and

saved (415U-X only at this stage).

To save the logic config select “System Tools” web page link and then select “Read

Configuration”

Next select “IOPlus Logic” press the “Download” button and then save the

“IOPlusLogic.sconf” file.

To load an xxxx.sconf file into the module go to System Tools/Write Configuration File

then “Choose file” and locate the sconf file you want to upload. Press the “Send” button

then navigate to the IOPlusLogic Web link and you will see the Logic has been loaded.

Press the “Save and Activate Changes” button to activate it.

Testing

Testing can be done by using the “DemoLogic” application. This will allow you to enter

the Logic operations as they would be entered into the module however it allows you to

step through or run the logic and tests the application.

Contact Eaton Support for the Demo Logic Application

Note: You can use this application to test logic command sequences and see how the

logic engine operates. This application simulates a limited version of the logic engine

provided in the product. Future

application will provide full device simulation and the ability to save the test logic steps to

a file which you will then be able to upload to the module.

There are many different ways of configuring the statement list, below are some

examples that have previously been used and may help explain the different operations,

how they function and how they can be implemented.

It is advised to test the IOPlus Logic prior to it being implemented using the “DemoLogic”

application to ensure correct operation and outcome.

Examples

#1: Run pump to fill a tank.

This example uses an analog input to measure tank level (Analog 1 at register 30001). It

fills the tank if it is below a remotely configured set-point (register 40501), and stops

when the level reads 1000 counts over the set-point.

Digital inputs 2 and 3 provide a pump stop signal (10002), and a manual pump run signal

(10003) which override the normal operation.

The pump is controlled by a contactor connected to Digital output 1 (0001).

Lines 1-3 Check the STOP signal and stop the pump if it is active (RST on line 2). If

the stop signal is active, then line 3 exits from the statement list execution by jumping

beyond the end of the program (Line 1000).

Lines 4-6 check the Manual RUN signal and start the pump if it is active (SET on line

5). If the run signal is active, then line 6 exits from the statement list in the same way

as line 3.

Lines 7-9 check if the tank level (30001) is less than (LT) the target level (40501), and

if so then the pump is started (SET on line 9).

Lines 10-14 check if the tank level is more than 1000 counts above the target level

(40501). The addition of register 40501 with the immediate value 1000 is performed as

a sub-calculation of the comparison (GT on line 11 through to “}” on line 13). Line 14

turns off the pump (RST) if the comparison (GT) is true.

#2: “Truflow” pump controller masking logic:

Truflow Pump Controller needed to mask certain register values based on other values.

i.e. If register “x” (pump status value) is Less than “a value” then make register “y” =

register “x”; otherwise (when register “x” Greater than “a value”) make register “y” = 0

Loads the input value from the register (40501) into the accumulator.

It then compares it to the value of 8000 (Because “I” is enabled this means it will use

the value instead of reading the register). The result of this operation will then either

be“1” if register 40501 is less than 8000 or “0” if greater than 8000

If the result is “0” it jump to line 7, loads 0 then stores this to Register 40502

Else if the outcome is “1” it will load register 40501 and then write this to register

40502. (Lines 4&5).

#3: Pump Run Time Accumulator, i.e. Counts the time an input has been activated.

This statement is reading the status of an input, i.e. Pump Run and then starting a timer

and accumulating a run time in seconds. Used for measuring the total run time of a

pump or motor for preventative maintenance purposes.

First, we load the pump run input (register 10001).

If the input is ON it starts a ¼ second counter routine (line 3) which loads register

40501, adding “1” to it and then writes this back to register 40501.

It then checks if the ¼ second timer has counted 1 second i.e. if the ¼ second timer

routine has counted 4 times (register 40501 is 4).

If one second has passed it will reset this register so as to start the counter from zero

again.

Then load register 40502 (Timer Counter Value), increments it by 1.

Then saves this back to register 40502. (This is the register that will store the number

of seconds the pump has run).

If one second has not passed (1/4 sec timer routine) it ends the statement, so it can

scan again (jumps to line 13).

If the Pump Run input is OFF (from the start) it basically jumps over the rest of the

routine and re- scans

#4: Pump Number of Starts, i.e. Counts the number of times an input has been

activated.

This statement is counting the number of times an input has been activated, e.g.

measuring the number of times a pump has started for maintenance purposes.

First, we load 0 to clear all previous values.

Load Digital Input #1- Pump run input (register 10001).

Next, we check to see if the value has changed since last time by checking if it is

equal (EQ) to value in reg 501.

Register 501 has the last saved status of the input (Saved from the last operation in

this statement list).

If it has not changed then jump to the end of the Statement list (line 300)

If it has changed then check if it is ON and if so jump to Line 8.

Line 8 will read register 40503 (Pump Start Counter), increments it by one then saves

it back to 40503.

40503 is the register that will hold the Number of Starts Counter.

Lastly, we load the value of 1 and store this to register 501 to be used in the next

scan.

#5: Scale Register, i.e. Scaling an internal register from a 4-20mA value.

This statement is scaling an internal Register (30510) to a value within the ranges, 0-

5000 or 0-10000 based on a normal 4-20mA analog range (16384 – 49152) in another

internal register (30501).

NO_OP is just there to allow a comment to be added.

Loads internal analog reg 30501.

Checks if it is greater than 16378 (4mA) with a slight rounding offset.

Jump to step 8 if Not True (less than 4mA) (value will be zero if less than 16378).

If True it loads register 30501 again

Subtract 16384 from the Value in 30501

Divide this by 13 (32768/2520)

Multiply by 2 for a scale 0-5000 or 4 for 0-10000.

Store scaled value (or zero if less than 16378 from step 4 jump) into register 30510.

#6 Accumulate a flow rate for Total Flow

This example accumulates measured flow at analog input 1, to calculate a totalized flow.

The analog input reads 0-100 l/min for 4-20mA (register value 16384 to 49152). The

totalized flow is calculated in units of litres, and is saved in the 32-bit register

36021/36022.

The analog value is sampled once on each logic execution (four times per second). This

results in a scaling factor of 240 to scale to minutes (4 samples/sec X 60 secs/min), and

a scaling factor of 1/100 to

scale to litres (full scale is 100 l/min) . Because the full-scale register value is 32768

(49152-16384), this scaling factor of 2.4 (240 / 100) scales the initial accumulated value

to units of 1/32768 litre.

Lines 1-7 Load the analog value and shift the scale to zero offset by subtracting

16384 (Analogs are 16384 for 4mA, 49152 for 20mA). Lines 3-7 check the value is

above the zero point (4mA) and set it to this value if it isn’t. The analog value is saved

at line 2 and restored at line 6 to ensure that the value doesn’t change after the check

for less than 4mA at line 3. At this point, the accumulator holds the flow rate scaled for

0=0 l/min, 32768=100 l/min

Lines 8-10 Multiply by the scale factor 2.4. This is done by dividing by 12, then

multiplying by 5. Note line 9 pre-compensates the result by adding ½ of the divide

value that is used in line 10. This compensates for rounding that occurs during the

integer divide. At this point, the accumulator holds the total litres measured in this

sample scaled so that 32768 corresponds to 1 litre.

Lines 11-12 Add the scaled value to the accumulator value in register 40501. This

register holds accumulated flow in units (litres/37268).

Lines 13-14 check if one litre (32768 counts) has been accumulated. If not, then the

execution completes (RET_C).

Line 15-17 subtract 1 litre (32768) from accumulator register 40501, in preparation to

adding one litre to the accumulated value in 32-bit register 36021.

Lines 18-20 add 1 to the low word of the 32-bit register, 36021 (corresponding to 1

litre)

Line 21 checks if the register overflowed as a result of the addition (if the accumulator

value is zero after incrementing it). If there is no overflow, then the program exits

(RET_C).

Lines 22-24 increment the high word of the 32-bit register (36022) if the low register

rolled over to zero.

Use a Timer Function to de-bounce two digital inputs

This example shows you how to implement a general-purpose timer function. It does

this by implementing two timers to separately de-bounce two digital inputs. Digital

input 1 is de-bounced for 2.5 seconds, and

output to Digital output 3. Digital input 2 is de-bounced for 5 seconds, and output to

digital output 4. Two registers (40501 and 40502) are used as the de-bounce timers

for the two inputs. The timer function takes the memory address of the timer as an

argument, so the same function can operate on either timer.

The timer function uses register address 46000 as a temporary location to save the

timer address to use for the delayed calculation in the following LOAD and STOR

instructions.

The timer function is defined in lines 2-13. The timer function implements a count-

down timer, and returns zero if the timer has expired, otherwise it returns the current

timer value. The function is called with the address of the timer register in the

accumulator.

Line 3 saves this address to temporary location 46000.

Lines 4 -6 load the timer value, using the address stored in location 46000.

Line 7 checks if the timer value is already zero, and if it is then returns with the value

zero still in the accumulator. This indicates the timer has expired.

Lines 8-11 subtract 1 from the timer value in the accumulator (Line 8) then save the

new value back to the timer register using the address stored in location 46000 (lines

9-11).

At Line 12, the timer value is still in the accumulator. This is returned. It will be zero if

the timer expired on this call. Otherwise it will be non-zero and will have the current

timer value.

Digital input 1 is de-bounced on lines 14 – 25. The de-bouncing uses register 40501

as a timer register.

Lines 14 and 15 load the DIN1 value and compare it against the DOT3 value that it is

de-bounced to. (XOR will be 1 if the values are different, and 0 if they are the same).

Line 16 checks the comparison, and if DIN1 and DOT3 are different the program

jumps ahead to line 20 (using the offset jump instruction to jump ahead 4 lines).

If DIN1 and DOT3 are the same, then the code in lines 17 – 19 initialise the de-bounce

timer

(register 40501) to its required value. The de-bounce for DIN1 is 2.5 seconds,

corresponding to 10 counts at a rate of ¼ second per count. Line 19 then jumps

ahead 6 lines to the end of the DIN1 de-bounce code at line 25.

Lines 20 and 21 are executed when DIN1 and DOT3 are different. These lines load

the address of the DIN1 timer (40501) and call the timer function. The timer function

returns 0 if the timer has expired.

Line 22 checks if the timer has not yet expired, and if not then jumps ahead 3 lines to

the end of the DIN1 de-bounce code.

Lines 23 -24 execute when the de-bounce is complete. This happens when the timer

has expired (Accumulator is zero after CALL ing the timer function). These two lines

copy the value in DIN1 to DOT3.

Digital input 2 is de-bounced on lines 26 – 37. The de-bouncing uses register 40502

as a timer register. The code is very similar to the code for DIN1 de-bounce. Because

the JUMP instructions are offset jumps (“I” flag), the JUMP and JUMP_C instructions

at lines 28, 31, and 34 have the same offsets as the corresponding instructions in

DIN1 code.

Line 29 loads the value 20, which corresponds the DIN2 de-bounce time (5 = 20 x ¼

second)

Lines 30 and 32 use the address 40502 as this is the timer register used for DIN2.

The NO_OP (no-operation) instructions at Line 13, 25,37 and 38 are not required.

They are only included to assist with readability.

Logic Arguments

Instructio

n
I N { Description Argument

LOAD Load the Accumulator

LOAD

Load a value from memory to the

accumulator.

32-bit counter: MSW at the high (

Even) address.

Float: Loads the integer part only

(0-65535)

Memory Register to l

oad from

LOAD I
Load an immediate value to the acc

umulator

The actual value to lo

ad to accumulator

LOAD N

Invert and Load to accumulator Disc

rete: ON gives “0”; OFF gives “1”. Ot

her types: bitwise invert e.g. 0xFAC

E gives 0x0531

Memory Register to l

oad from

LOAD {

Calculate Memory Register to

Load from within the { }. The

accumulator value is loaded from th

e location that has been calculated

when the “}” statement is reached.

Initial value for the M

emory

Register calculation

STORE Store the Accumulator to memory

STOR
Save value from accumulator to me

mory

Memory location to s

ave to

STOR N

Invert accumulator and save. When

storing to a bit

Register, a non-zero value is stored

as off, and zero is stored as on.

Memory location to s

ave to

STOR {

Calculate Memory Register to Store

to within the following instructions { }

.

The current accumulator value is sa

ved to the location that has been cal

culated when the “}” statement is rea

ched.

Initial value of Regist

er calculation

Delayed

Calculati

on

{

Calculate the Second Argument o

f a statement

Use this feature when you need mult

iple steps to calculate the second ar

gument of a statement.

{

Check the “{“Column to begin calcul

ation of the argument to a statement

. This works for LOAD, STOR and fo

r all of the Logic and Math operation

s, as well as for the Test/Compariso

n operations.

Initial value to load

for the calculation

}

Complete and execute a delayed Cal

culation. This matches the opening b

race flag “{“in the LOAD, STORE, Ari

thmetic, Logical, and Comparison

Argument Ignored

commands. It completes the

calculation of the argument value an

d executes the original command.

SET/RESET Set or Clear a bit

SET

Set memory register to “1” if accumu

lator is nonzero.

Unchanged if accumulator is zero.

Memory location to s

et

SET N
Set memory register to “1” if accumu

lator is zero.

Memory location to s

et

RES

Clear memory register if

accumulator is non- zero.

Unchanged if accumulator is zero.

Memory location to cl

ear

RES N
Clear memory register if

accumulator is zero.

Memory location to cl

ear

LOGIC/MATH
Bitwise Logical and Arithmetic opera

tions

AND OR

XOR AD

D SUB M

UL DIV

Perform Logical / Arithmetic operatio

n between Accumulator and memory

. Result is saved in the accumulator.

AND, OR, XOR

– Bitwise Op

ADD – 16‐bit addition SUB – 16‐Bi

t subtraction

MUL – Multiplication (Mod 65535)

DIV – Division (x / 0 = 0)

Register index of the

value to use for the s

econd operand

AND

…. DIV

I

Perform Logical / Arithmetic operatio

n between Accumulator and Immedi

ate value

Immediate value to u

se for the second ope

rand

AND

…. DIV

N

Negate the argument (Bitwise invert)

before performing the operation.

Applies to Register, I

mmediate and delaye

d calculation.

AND

…. DIV

{

Perform Logical / Arithmetic operatio

n between Accumulator and the resu

lt of the following calculation within t

he { }

Initial memory locatio

n or immediate value

(I) for calculation of s

econd

operand.

TEST Compare two Values

GT GE E

Q NE LE

LT

Perform Comparison operation betw

een Accumulator and memory. Accu

mulator gets “1” if comparison true. “

0” if false.

GT – Greater Than GE – Greater

or Equal EQ – Equal To

NE – Not Equal LE – Less or equa

l

LT – Less Than

Register index of the

value

to use for the second

operand of the

comparison

GT

….

LT

I

Perform Comparison operation betw

een Accumulator and Immediate val

ue.

Accumulator gets “1” if comparison tr

ue. “0” if false.

Immediate value to u

se for the second ope

rand of the compariso

n

GT

….

LT

N

Negate the argument (two’s complim

ent) before performing the comparis

on

Applies to Register, I

mmediate and delaye

d calculation forms.

GT

….

LT

{

Perform Comparison operation betw

een Accumulator and the result of th

e following calculation within the { }

Initial memory locatio

n or immediate value

(I) for calculation of s

econd

operand.

JUMP
Transfer a Control to a new Locati

on

JMP Jump to instruction
Line number to jump t

o

JMP I

Jump forward or backward from the

current location

the number of lines specified

0-9999: Jump Forwar

d

10000+: Jump backw

ard

JMP_C
Conditional Jump if accumulator is n

on-zero

Line jump to if

accumulator is non-ze

ro

JMP_C N
Conditional Jump if accumulator is z

ero

Line number to jump t

o if accumulator is zer

o.

JMP_C I

Conditional Jump forward or

backward from the

current location the number of lines s

pecified

0-9999: Jump Forwar

d

10000+: Jump backw

ard

CALL / RETURN Call a Subroutine and Return

CALL

Call a subroutine. A subroutine will e

xecute the listed

statements until a “RET” statement is

reached,

where control returns to the line follo

wing the CALL

statement.

Line number of first in

struction of the

subroutine

to call

CALL I

Call a subroutine forward or backwar

d from the

current location offset from current lo

cation

0-9999: call Forward

10000+: call backwar

d

CALL_C

Conditional Call if accumulator is non

-zero. (otherwise continue to next lin

e)

Line number to call if

accumulator is non-ze

ro

CALL_C N
Conditional Call if accumulator is zer

o

Line number to call if

accumulator Is zero.

CALL_C I

Conditional Call a subroutine forward

or backward

from the current location, offset from

current location

0-9999: Jump Forwar

d

10000+: Jump backw

ard

RET

Return from subroutine. Returns to th

e instruction

following the last executed CALL

instruction.

Argument Ignored

RET_C
Return to calling address if accumula

tor is non-zero Argument Ignored

RET_C N
Return to calling address if accumula

tor is zero
Argument Ignored

Amendment Register

Issue No. Date Details of Amendment

1.8

1.9

1.10

1.11

1.12

6/3/18

5/6/20

1/12/20

23/7/24

17/4/25

Minor Edits

Added Save file and made more module generic.

Minor changes, added Scale Register example (#5), Loa

d Config. Added 925U-2

Logo and minor update

FAQ

Q: Can I use I/O Plus as a PLC or RTU replacement?

A: No, I/O Plus is not intended to be utilized as a PLC or RTU replacement. It is

designed for logic tasks in Wireless I/O products.

Documents / Resources

ELPRO 415U-2 Long Range Wireless Ethernet I p and Gateway [pdf] Instr

uction Manual

415U-2, 415U-E, 925U-2, 215U-E, 115E-2, 415U-2 Long Range Wireless

Ethernet I p and Gateway, 415U-2, Long Range Wireless Ethernet I p and

Gateway, Wireless Ethernet I p and Gateway, I p and Gateway, Gateway

References

https://manuals.plus/m/c9808cbef5a666120eaae48f9ccdb888e74085da00bded9e4b439b2b9bf530ce
https://manuals.plus/m/c9808cbef5a666120eaae48f9ccdb888e74085da00bded9e4b439b2b9bf530ce
https://manuals.plus/m/c9808cbef5a666120eaae48f9ccdb888e74085da00bded9e4b439b2b9bf530ce_optim.pdf

User Manual

ELPRO

115E-2, 215U-E, 415U-2, 415U-2 Long Range Wireless Ethernet I p and Gateway, 415U-E, 925U-2, ELPRO, gateway, I p

and Gateway, Long Range Wireless Ethernet I p and Gateway, Wireless Ethernet I p and Gateway

—Previous Post
ELPRO 215U-2 Gateway With MQTT Sparkplug Installation Guide

Leave a comment

Search:

e.g. whirlpool wrf535swhz Search

Manuals+ | Upload | Deep Search | Privacy Policy | @manuals.plus | YouTube

Your email address will not be published. Required fields are marked *

Comment *

Name

Email

Website

 Save my name, email, and website in this browser for the next time I comment.

Post Comment

https://manual.tools/?p=16692830#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/category/elpro
https://manuals.plus/tag/115e-2
https://manuals.plus/tag/215u-e
https://manuals.plus/tag/415u-2
https://manuals.plus/tag/415u-2-long-range-wireless-ethernet-i-p-and-gateway
https://manuals.plus/tag/415u-e
https://manuals.plus/tag/925u-2
https://manuals.plus/tag/elpro
https://manuals.plus/tag/gateway
https://manuals.plus/tag/i-p-and-gateway
https://manuals.plus/tag/long-range-wireless-ethernet-i-p-and-gateway
https://manuals.plus/tag/wireless-ethernet-i-p-and-gateway
https://manuals.plus/elpro/215u-2-gateway-with-mqtt-sparkplug-manual
https://manuals.plus/
https://manuals.plus/upload
https://manuals.plus/deep-search
https://manuals.plus/privacy-policy
https://x.com/manualsplus
https://www.youtube.com/@manualsplus

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos

are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of

these marks on this website does not imply any affiliation with or endorsement.

	ELPRO 415U-2 Long Range Wireless Ethernet I p and Gateway
	Product Information
	Overview
	Logic Page
	Operations
	Use a Timer Function to de-bounce two digital inputs
	Logic Arguments
	FAQ
	Documents / Resources
	References

	Post navigation
	Leave a comment

