

dynamic BIOSENSORS AS-2-Rc Fully Automated Laboratory Analysis System User Manual

Home » dynamic BIOSENSORS » dynamic BIOSENSORS AS-2-Rc Fully Automated Laboratory Analysis System User Manual 🖫

Contents

- 1 dynamic BIOSENSORS AS-2-Rc Fully Automated Laboratory Analysis System
- **2 Product Usage Instructions**
- 3 Key Features
- 4 heliX® Adapter Chip Overview
- **5 Product Description**
- 6 Preparation | MIX&RUN
- 7 FAQ
- 8 Documents / Resources
 - 8.1 References
- 9 Related Posts

dynamic BIOSENSORS AS-2-Rc Fully Automated Laboratory Analysis System

Specifications

• Product Name: heliX+ ADAPTER STRAND 2 with red dye Rc

• Manufacturer: Dynamic Biosensors GmbH & Inc.

• Model: AS-2-Rc v5.1

· Key Features:

• 2 spots with 2 different anchor sequences for DNA-encoded addressing.

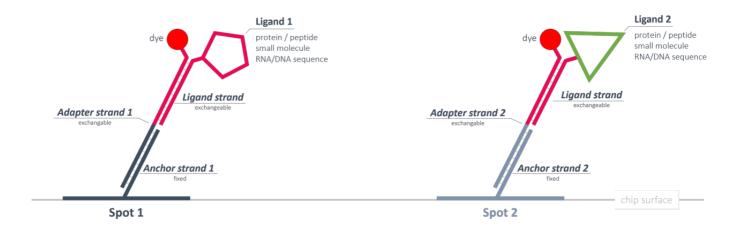
Order Number: AS-2-RcConcentration: 400 nM

• Storage: White cap, please see expiry date on label. Avoid many freeze-thaw cycles by aliquoting the nanolever.

Product Usage Instructions

Preparation | MIX&RUN

- 1. Mix Adapter strand 1 Rc (400 nM) and conjugated Ligand strand with ligand 1 (500 nM) at 1:1 ratio (v/v).
- 2. Mix Adapter strand 2 Rc (400 nM) and conjugated Ligand strand with ligand 2 (500 nM) at 1:1 ratio (v/v).
- 3. Incubate separately the two solutions of step 1 and 2 at room temperature at 600 rpm for 30 min to ensure complete hybridization.
- 4. Mix solutions of step 1 and 2 at 1:1 ratio (v/v). Solution is ready for biochip functionalization.


Key Features

- Adapter strand 2 for functionalization of heliX® Adapter Chip Spot 2.
- Compatible with heliX® Adapter Chip.
- · Includes Adapter strands for 50 regenerations.
- · Ideal for MIX&RUN sample preparation.

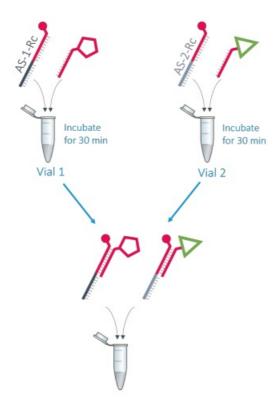
• Adapter strand 2 carries a hydrophobic red dye (Rc) with a neutral net charge.

heliX® Adapter Chip Overview

2 spots with 2 different anchor sequences for DNA-encoded addressing.

Product Description

Order Number: AS-2-Rc


Table 1. Contents and Storage Information

Material	Сар	Concentration	Amount	Buffer	Storage
Adapter strand 2 - Rc	White	400 nM	5 x 100 μL	TE40 [1]	-20°C

- · For research use only.
- This product has a limited shelf life, please see expiry date on label.
- To avoid many freeze thaw cycles please aliquot the nanolever

Preparation | MIX&RUN

In-solution hybridization of adapter and ligand strands:

- 1. Mix Adapter strand 1 Rc (400 nM) and conjugated Ligand strand with ligand 1 (500 nM) at 1:1 ratio (v/v).
- 2. Mix Adapter strand 2 Rc (400 nM) and conjugated Ligand strand with ligand 2 (500 nM) at 1:1 ratio (v/v).
- 3. Incubate separately the two solutions of step 1 and 2 at RT at 600 rpm for 30 min to ensure complete hybridization.
- 4. Mix solution of step 1 and 2 at 1:1 ratio (v/v). Solution is ready to use for biochip functionalization. Stability of the solution is related to the stability of the ligand molecules.

Table 2. Additional material for functionalization of spot 1 and reference spot 2.

Material	Concentration	Buffer	Related Product Name	Order No
Adapter strand 1 - Rc	400 nM	TE40 [1]	Adapter strand 2 with red dye Rc	AS-1-Rb
Ligand strand carrying the conjugated ligand 1	500 nM	PE40 [heliX® Amine Coupling Kit 1	HK-NHS-1
Ligand strand carrying the conjugated ligand 2	500 nM	PE40 ^[2]	heliX® Amine Coupling Kit 1	HK-NHS-1

Example

Required volume for 3 functionalizations: 100 μL with a final concentration of 100 nM.

Vial 1		Vial 2		
Adapter strand 1 - Rc (400 nM)	Conjugated <i>Ligand strand</i> with ligand 1 (500 nM)	Adapter strand 2 - Rc (400 nM)	Conjugated <i>Ligand strand</i> + with ligand 2 (500 nM)	
25 μL	25 μL	25 μL	25 μL	

After incubation time, mix vial 1 and vial 2 to obtain 100 µL of ready-to-use DNA solution.

Contact

Dynamic Biosensors GmbH Perchtinger Str. 8/10 81379 Munich Germany

Dynamic Biosensors, Inc.

300 Trade Center, Suite 1400 Woburn, MA 01801 USA

- Order Information <u>order@dynamic-biosensors.com</u>
- Technical Support <u>support@dynamic-biosensors.com</u>
- www.dynamic-biosensors.com

Instruments and chips are engineered and manufactured in Germany.

©2024 Dynamic Biosensors GmbH | Dynamic Biosensors, Inc. All rights reserved.

- 1. **TE40:** 10 mM Tris, 40 mM NaCl, 0.05 % Tween20, 50 μ M EDTA, 50 μ M EGTA
- 2. If the protein is not stable in PE40 (TE40, HE40), please check buffer compatibility with the switchSENSE® compatibility sheet.

www.dynamic-biosensors.com

FAQ

Q: What is the shelf life of the product?

A: The product has a limited shelf life, please refer to the expiry date on the label.

Q: How should I store the product to maintain stability?

A: Store the product with a white cap to avoid exposure to light. Avoid freeze-thaw cycles by aliquoting the nanolever.

Q: How should I prepare the solution for biochip functionalization?

A: Follow the MIX&RUN preparation steps provided in the user manual to prepare the solution for biochip functionalization.

Documents / Resources

dynamic BIOSENSORS AS-2-Rc Fully Automated Laboratory Analysis System [pdf] User Manual

AS-2-Rc, AS-2-Rc Fully Automated Laboratory Analysis System, Fully Automated Laboratory Analysis System, Automated Laboratory Analysis System, Laboratory Analysis System, System, System

References

User Manual

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.