Manuals+ — User Manuals Simplified.

DIODES AP33772 USB PD Sink Controller Raspberry Pi 12C
Interface User Guide

A

Home » DIODES » DIODES AP33772 USB PD Sink Controller Raspberry Pi 12C Interface User Guide -

Contents
1 DIODES AP33772 USB PD Sink Controller Raspberry Pi 12C
Interface
2 Introduction
3 Validation Platform Setup
4 Raspberry Pi Software Setup
5 Basic Command Examples
6 Practical Examples
6.1 Example Code Download
6.2 Example Download Site
7 References
8 Revision History
8.1 IMPORTANT NOTICE
9 Documents / Resources
9.1 References
10 Related Posts

®
I M € O R P ORATED

DIODES AP33772 USB PD Sink Controller Raspberry Pi 12C Interface

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/diodes
https://manuals.plus/diodes/ap33772-usb-pd-sink-controller-raspberry-pi-i2c-interface-manual.pdf

Introduction

« AP33772 Sink Controller, working as the protocol device of USB PD3.0 Type C Connector-equipped Device
(TCD, Energy Sink), is intended to request proper Power Data Object (PDO) from the USB PD3.0 Type C
Connector-equipped PD3.0 compliance Charger (PDC, Energy Source).

« Figure 1 illustrates a TCD, embedded with PD3.0 Sink controller IC (AP33772), is physically connected to PDC,
embedded with USB PD3.0 decoder (AP43771), through a

« Type C-to-Type C cable. Based on built-in USB PD3.0 compliant firmware, The AP33772 and AP43771 pair
would go through the USB PD3.0 standard attachment procedure to establish suitable PD3.0 charging state.

« AP33772 Sink Controller EVB provides ease of use and great versatility for system designer to request PDOs
from USB Power Delivery Charger by sending AP33772 built-in commands through 12C interface. Typical
system design requires MCU programming which needs specific software (e.g. IDE) setup and can be a time-
consuming development process.

« In contrast, Raspberry Pi (RPI), a single board computer (SBC) running on a user-friendly Linux OS and
equipped with flexible GPIO pins, provides a straightforward way to validate AP33772 Sink EVB working with a
PD Charger. The goal of this guide is to provide system designers an effective platform to quickly complete
software validation on RPI and then port the development to any desirable MCU to meet rapid turnaround
market requirements.

« As a supplemental document to the AP33772 EVB User Guide, this User Guide illustrates an easy way to
control AP33772 EVB with a RPI SBC through 12C Interface.

« The role of MCU block depicted in Figure 1 to interface with AP33772 is played by an RPI. This User Guide
covers a lot of register definition and usage information as examples, However, for complete and most updated

information, please refer to AP33772 EVB User’ Guide. (See Reference 2)

TCD Device

Veus Vaur
l USB Type-C* J_l_
! Connector T

AP33772
(PD Sink)

« Figure 1 — A typical TCD uses AP33772 PD Sink Controller with 12C Interface to request power from an USB
Type-C PD3.0/PPS Compliance Source Adapter

Validation Platform Setup

AP33772 Sink Controller EVB

Figure 2 shows the picture of the Sink Controller EVB. It features Type-C Connector, I12C pins, GPIO3 pin for
Interrupt, NTC Thermistor for OTP, LED indicators to show the charging status, and Vout connector to the load.

VBUS Power Charging AP33772 VOUT Enable VOUT Load
LED LED Sink Controller MOS Switches Connector

o pe R0 mzrmazl T LSO actiag
==l =) wliaialcizlz]

ey

—n

Type-C GND SDA SCL NTC Thermistor GPIO 3
Connector {12C BUS) (Interrupt)
Figure 2 - AP33772 Sink Controller EVB

Raspberry Pi Zero 2W

« Any latest version of RPI is capable of controlling AP33772 Sink Controller EVB through I2C pins. A Raspberry
Pi Zero 2 W (RPI Z2W) is used in this User Guide for its cost effectiveness and versatility. It has the smallest
formfactor among all RPIs and is integrated with WiFi and Bluetooth that makes the wireless connection

without additional component. It servers the purpose as the AP33772 Sink Controller EVB Validation Platform
perfectly.

« User may check the Raspberry Pi official website for additional information

(https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/)

https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/

Begniszse 2y

GRI0 '

Figure 3 - Raspberry Pi Zero 2 W (RPI Z2W)
o

28« <o leznd & KRS ?
o - o el e i
SO FHIE R R L R IR

JEHIGGERIL H R LR A i

g 1 L B | B |-‘EH] LI 3".“3’5151’\6 M W | Wm0 ;i

B il |l

2 DO . . @ » e el » R

g sl e . . ® e s s 8 @ ;;E

E‘ L]] L] L n L2} L Fi L1 L L4 w @ L] e o - o L4 fti

ey et Dl [l | | |18
flgl=m-2 .2 s || = M g =3 o|3g Anin_ a2l "

iH B R AR I R B HE A I
Jdobe| olalal lalais| slswlalale] | U

Figure 4 — Raspberry Pi Zero 2 W Pinout Diagram

Validation Platform Connection and Power up

Figure 5 shows a complete connection and setup of the Validation Platform. User should follow these steps:

1. Connect SCL, SDA, and GND pins between RPI and AP33772 EVB
2. Connect 65W PD Charger and AP33772 EVB with Type-C cable
3. Power up RPI and PD Charger.

3 Dupont wires for 12C:
GND, SDA, SCL

Type-C Cable

Raspberry Pi
Zero 2W

Figure 5 - Complete Setup of the Validation Platform

Raspberry Pi Software Setup

Raspberry Pi OS

« There are many different operating systems that support RPI. Among these, Raspberry Pi OS is chosen

because it is the most used and recommended by RPI official site.

Download OS Image and Prepare SD Card

« Download and install Raspberry Pi Imager tools on a PC (https:/www.raspberrypi.com/software/). Follow

the instruction to prepare a Micro-SD loaded with correct OS image (https://youtu.be/ntaXWS8Lk34/). Please

note Micro-SD card of 32BG or greater is recommended.

(1]] Eapney P magw 14 [] Rartphrry P imager v14L3 die Eapbarmy imager 110]

Raspberry Pi Raspberry Pi Raspberry Pi

Figure 6 - Raspberry Pi Imager Tool for OS5 Image Download and Preparation

Raspberry Pl OS Installation

« Insert the Micro-SD card loaded with imager earlier into RPI's Micro-SD slot. Connect the power adapter,
mouse/keyboard, and HDMI monitor. Power on the RPI and follow the instruction to complete OS installation
and basic setup. Make sure the latest updates are included on the OS.

Setup of Required Features

« In order to run I12C interface on RPI successfully, we must configure or install the SSH, VNC, and 12C features.

Raspberry Pi Config — SSH, VNC, 12C

« After RPI boot-up, open “Raspberry Pi Configure” utility and turn on SSH, VNC, and 12C features.

https://www.raspberrypi.com/software
https://youtu.be/ntaXWS8Lk34/

Raspbery. § nfguration - x

interfaces

Figure 7 — Enable S5H, VNC, and 12C in Raspberry Pi Configuration Utility

12C Baud Rate Configuration

« Replace the lines regarding dtparam and dtoverlay in /boot/config.txt file with:
« dtoverlay=i2c-bcm2708
o diparam=i2c_arm=on,i2c_arm_baudrate=640000

12C-Tools Installation

« |12C-Tools is a toolset that provides simple commands running on command line under Raspberry Pi OS. Install

I2C-Tools on the OS by running: sudo apt install i2c-tools

SMBus2 Installation

« SMBus2 is a Python module that provides convenient functions for user to control 12C interface under Python

environment. Install SMBus2 module for Python on the OS by running: sudo pip3 install smbus2

Basic Command Examples

« This User Guide demonstrate two different methods to work with 12C interface on RPI. They are 12C-Tools

Utility and Python SMBus2 Module. The basic commands of both methods are introduced in this section.

12C-Tools Command Examples

« 12C-Tools utility package provides i2cdetect, i2cget, and i2cset commands. Simplified usages are described in
the examples under this section. For complete information about 12C-Tools utility, please refer to
https:/linuxhint.com/i2c-linux-utilities/.

« Table 1 shows the AP33772 register summary for user’s convenience to digest the command usage in this

section. For complete register information, please refer to AP33772 Sink Controller EVB User Guide.

Register Command | Length | Attribute | Power-on Description

https://linuxhint.com/i2c-linux-utilities/

Power Data Object (PDO) used to expose
PD Source (SRC) power capabilities.

SRCPDO 0x00 28 RO All 00h Total length is 28 bytes

PDONUM 0x1C 1 RO 00h Valid source PDO number

STATUS 0x1D 1 RC 00h AP33772 status

MASK Ox1E 1 RwW 01h Interrupt enable mask

VOLTAGE 0x20 1 RO 00h LSB 80mV

CURRENT 0x21 1 RO 00h LSB 24mA

TEMP 0x22 1 RO 19h Temperature, Unit: °C

OCPTHR 0x23 1 RW 00h OCP threshold, LSB 50mA
OTPTHR 0x24 1 RW 78h OTP threshold, Unit: °C

DRTHR 0x25 1 RW 78h De-rating threshold, Unit: °C

TR25 0x28 2 RW 2710h Thermal Resistance @25°C, Unit: Q
TR50 0x2A 2 RwW 1041h Thermal Resistance @50°C, Unit: Q
TR75 0x2C 2 RwW 0788h Thermal Resistance @75°C, Unit: Q
TR100 0x2E 2 RwW 03CEh Thermal Resistance @100°C, Unit: Q

RDO 0x30 4 WO 00000000h Request Data Op!qct (RDOQ) is use to requ
est power capabilities.

VID 0x34 > RW 0000h Venc.jor !D, Reserved for future
applications

PID 0x36 > RW 0000h SF)’roduct ID, Reserved for future application

RESERVED 0x38 4 - - Reserved for future applications

Table 1 — AP33772 Register Summary

Detect all devices attached to 12C — i2cdetect

« To display all i2c devices currently attached to 12C-1 bus, type the following under command prompt: i2cdetect
-y 1
« |f AP33772 Sink Controller EVB is attached, user should see device is attached at 0x51 address

Read SRCPDO (0x00~0x1B)

« i2cget command doesn’t support block read longer than 2 bytes. User needs to use “for loop” to display all 28-
byte long PDO data. To display all PDO data, type the following under bash command prompt for i in {0..27}; do
i2cget -y 1 0x51 $i b; done

« 28-byte data representing 7 PDOs will be displayed

Read PDONUM (0x1C)

« To display total number of valid PDOs, type the following under command prompt: i2cget -y 1 0x51 Ox1c b

Read STATUS (0x1D)

« This command reports the Sink Controller’s status including de-rating, OTP, OCP, OVP, Request Rejected,
Request Completed, and Ready. To display the status information, type the following under command prompt:
i2cget -y 1 0x51 0x1d b

« User should use this command after each RDO request to ensure successful RDO request by reading the
COMPLETE bit. 4.1.5 Write MASK (0x1E)

« This command enables the interrupts that signal the host through GPIO3 pin of AP33772. The interrupts
include Derating , OTP, OCP, OVP, Request Rejected, Request Completed, and Ready. To enable a specific
interrupt, set the corresponding bit to one. For example, to enable OCP interrupt, set bit 4 of MASK register to

one by typing the following under command prompt: i2cset -y 1 0x51 Ox1e 0x10 b

« GPIOS pin of AP33772 will go high when the OCP protection is trigger.

Read VOLTAGE (0x20)

« This command reports the voltage measured by the AP33772 Sink Controller. To report the voltage, type the
following under command prompt: i2cget -y 1 0x51 0x20 b

« One unit of the reported value represents 80mV.

Read CURRENT (0x21)

« This command reports the current measured by the AP33772 Sink Controller. To report the current, type the
following under command prompt: i2cget -y 1 0x51 0x21 b

« One unit of the reported value represents 24maA.

Read TEMP (0x22)

« This command reports the temperature measured by the AP33772 Sink Controller. To report the temperature,
type the following under command prompt:
i2cget -y 1 0x51 0x22 b

« One unit of the reported value represents 1°C.

» Read and Write OCPTHR (0x23), OTPTHR (0x24), and DRTHR (0x25)

« OCP, OTP, and Derating thresholds can be changed to user desirable values by writing the values to OCPTHR,
OTPTHR, and DRTHR registers. As an example, to change OCP threshold to 3.1A, user should write Ox3E
(=3100/50=62=0x3E) to OCPTHR by typing the following under command prompt: i2cset -y 1 0x51 0x23 0x3e
b

« To change OTP threshold to 110°C, user should write Ox6E (=110) to OTPTHR by typing the following under
command prompt:

« To read the values out of OCPTHR, OTPTHR, and DRTHR, type the following under command prompt:

e i2cget -y 1 0x51 0x23 b i2cget -y 1 0x51 0x24 b i2cget -y 1 0x51 0x25 b

« Read and Write TR25 (0x28~0x29), TR50 (0x2A~0x2B), TR75 (0x2C~0x2D), and TR100 (0x2E~0x2F)

« A Murata 10KQ Negative Temperature Coefficient (NTC) Thermistor NCP0O3XH103 is populated on the
AP33772 EVB. It is user’s preference to change the thermistor to a different one in the final design. User
should update TR25, TR50, TR75, and TR100 register values according to specifications of the thermistor
used. For example,

o Murata’s 6.8KQ NCP03XH682 is used in the design. The resistance values at 25°C, 50°C, 75°C, and 100°C
are 6800Q (0x1A90), 2774Q (0x0AD6), 1287Q (0x0507), and 662Q (0x0296) respectively. To write the
corresponding values to these registers, type the following under command prompt:

e i2cset -y 1 0x51 0x28 0x1a90 w i2cset -y 1 0x51 0x2a 0x0ad6 w i2cset -y 1 0x51 0x2c 0x0507 w i2cset -y 1
0x51 0x2e 0x0296 w

« To read the values out, type the following under command prompt: i2cget -y 1 0x51 0x28 w i2cget -y 1 0x51
0x2a w i2cget -y 1 0x51 0x2c w i2cget -y 1 0x51 Ox2e w

« The output values are 2-byte words. Since the commands handle 2-byte word directly, users don’t need to

worry about little endian byte order here.

Write RDO (0x30~0x33)

« To initiate a PDO request negotiation procedure, 4-byte data is written to RDO (Request Data Object) register
in little-endian byte order. As example, to request PDO3 with 15V and 3A, 0x3004B12C will be written to RDO
register. Type the following under command prompt: i2cset -y 1 0x51 0x30 0x2c Oxb1 0x04 0x30 i

« The least significant byte (0x2C) should be written in first to fit little endian byte order notation. Please refer to
Table 9 and Table 10 of AP33772 Sink Controller EVB User

« Guide for detailed RDO content information.

« User can issue a hard reset by writing RDO register with all-zero data: i2cset -y 1 0x51 0x30 0x00 0x00 0x00
0x00 i

« The AP33772 Sink Controller will be reset to its initial state and output will be turned off.

Python SMBus2 Command Examples

« Python is getting more popular for its great varieties of supported modules. SMBus2 is among of those and
capable of handling 12C read and write commands. SMBus2 provides read_byte data, read_word_data,
read_i2c_block_data, write_byte_data, write_word_data, write_i2c_block_data commands. Simplified usages

are described in the examples under this section. For complete information about SMBus2 module, please

refer to https:/smbus2.readthedocs.io/en/latest/.

Read SRCPDO (0x00~0x1B)

« SMBus.read_i2c_block_data is an effective command to support up to 32-byte block data read. To read all 28-
byte PDO data, use the following under python3 environment:
« SMBus.read_i2c_block_data(0x51, 0x00, 28)

« 28 one-byte data representing 7 PDOs will be returned in list data structure.

Read PDONUM (0x1C)

« To read total number of valid PDOs, use the following under python3 environment:
« SMBus.read_byte_data(0x51, Ox1c)

« One byte data representing valid PDO count will be returned.

Read STATUS (0x1D)

« This command reports the Sink Controller’s status including Derating , OTP, OCP, OVP, Request Rejected,
Request Completed, and Ready. To read the status information, use the following under python3 environment:

« SMBus.read_byte_data(0x51, 0x1d)

« User may use this command after each RDO request to ensure successful RDO request by reading the
COMPLETE bit.

Write MASK (0x1E)

« This command enables the interrupts that signal the host through GPIO3 pin of AP33772. The interrupts

https://smbus2.readthedocs.io/en/latest/

include Derating , OTP, OCP, OVP, Request Rejected, Request

« Completed, and Ready. To enable a specific interrupt, set the corresponding bit to one. For example, to enable
OCP interrupt, set bit 4 of MASK register to one by using the following under python3 environment:

« SMBus.write_byte_data(0x51, Ox1e, 0x10)

« GPIOS3 pin of AP33772 will go high when the OCP protection is trigger.

Read VOLTAGE (0x20)

« This command reports the voltage measured by the AP33772 Sink Controller. To report the voltage, use the
following under python3 environment:
o SMBus.read_byte_data(0x51, 0x20)

« One unit of the reported value represents 80mV.

Read CURRENT (0x21)

« This command reports the current measured by the AP33772 Sink Controller. To report the current, use the
following under python3 environment
o SMBus.read_byte_data(0x51, 0x21)

« One unit of the reported value represents 24maA.

Read TEMP (0x22)

« This command reports the temperature measured by the AP33772 Sink Controller. To report the temperature,
use the following under python3 environment:
o SMBus.read_byte_data(0x51, 0x22)

« One unit of the reported value represents 1°C.

Read and Write OCPTHR (0x23), OTPTHR (0x24), and DRTHR (0x25)

« OCP, OTP, and Derating thresholds can be changed to user desirable values by writing the values to OCPTHR,
OTPTHR, and DRTHR registers. As an example, to change OCP threshold to 3.1A, user should write Ox3E
(=3100/50=62=0x3E) to OCPTHR by using the following under python3 environment:
SMBus.write_byte_data(0x51, 0x23, 0x3e)

« To change OTP threshold to 110°C, user should write Ox6E (=110) to OTPTHR by using the following under
python3 environment: SMBus.write_byte_data(0x51, 0x24, 0x6e)

« To change Derating threshold to 100°C, user should write 0x64 (=100) to DRTHR by using the following under
python3 environment: SMBus.write_byte_data(0x51, 0x25, 0x64)

« To read the values out of OCPTHR, OTPTHR, and DRTHR, use the following under python3
environment: SMBus.read_byte data(0x51, 0x23) SMBus.read_byte _data(0x51, 0x24)

SMBus.read_byte data(0x51, 0x25) .

» Read and Write TR25 (0x28~0x29), TR50 (0x2A~0x2B), TR75 (0x2C~0x2D), and TR100 (0x2E~0x2F)

« A Murata 10KQ Negative Temperature Coefficient (NTC) Thermistor NCP0O3XH103 is populated on the
AP33772 EVB. It is user’s preference to change the thermistor to a different one in the final design. User

should update TR25, TR50, TR75, and TR100 register value according to specifications of the thermistor used.

For example, Murata’s 6.8KQ NCP03XH682 is used in the design. The resistance values at 25°C, 50°C, 75°C,
and 100°C are 6800Q (0x1A90), 2774Q (0x0ADBG), 1287Q (0x0507), and 662Q (0x0296) respectively. To write
the corresponding values to these registers, use the following under python3 environment:

« SMBus.write_word_data(0x51, 0x28, 0x1a90) SMBus.write_word_data(0x51, 0x2a, 0x0ad6)
SMBus.write_word data(0x51, 0x2c, 0x0507) SMBus.write_word_data(0x51, 0x2e, 0x0296)

« To read the values out, use the following under python3 environment: SMBus.read_word_data(0x51, 0x28)
SMBus.read word_data(0x51, 0x2a) SMBus.read_word_data(0x51, 0x2c) SMBus.read word_data(0x51,
0x2e)

« The return values are also 2-byte words. Since the commands handle 2-byte word directly, users don’t need to

worry about little endian byte order here.

Write RDO (0x30~0x33)

« To initiate a PDO request negotiation procedure, 4-byte data is written to RDO (Request Data Object) register
in little-endian byte order. As example, to request PDO3 with 15V and 3A, 0x3004B12C will be written to RDO
register. Use the following under python3 environment:

« SMBus.write_i2c_block_data(0x51, 0x30, [0x2c, 0xb1, 0x04, 0x30])

« Please refer to Table 9 and Table 10 of AP33772 Sink Controller EVB User Guide for detailed RDO content
information.

« User can issue a hard reset by writing RDO register with all-zero data:

« SMBus.write_i2c_block_data(0x51, 0x30, [0x00, 0x00, 0x00, 0x00])

« The AP33772 Sink Controller will be reset to its initial state and output will be turned off.

Practical Examples

Example 1: Bash 12C-Tools Example: ap33772_querypdo.bash
This example checks all valid PDOs and lists the voltage and current capability information out.
Code Details

#lbinbash

This program reports all PDO information

RPI_I2CBUS=1 # Using Raspberry Pi 12C_1 l AP33772 has 12C address 0x51
I2C_ADDR=0x51 # |12C address 0x51
PDO_ADDR=0x00 # PDO address range 0x00 - Ox1b, Staring at 0x00, max is T PDOs
ValidPDOCnt=0 # reset Valid PDO count

for i in {06}
do | Read PDO info 4 times with 1 byte each
Read PDO info 4-byte or 32-bit long each .
PDO=S({ ('i2cget -y SRPI_I2CBUS $I2C_ADDR $((SPDO_ADDR-+4*Si+3))" << 24)

| ('iZegat -y $RPI_I2CBUS $I2C_ADDR ${{$FDO_ADDR+4"5i+2)) << 16)

| ((i2cget -y $RPI_I2ZCBUS S12C_ADDR $((3PDO_ADDR+4°5i+1)) =< 8)

| [iZcget -y SRPI_IZCBUS $I2C_ADDR $((3PDO_ADDR+4"Si))") })

If PDO reads all zero data, it's not a valid PDO. Only processing valide PDO

IS_VALID_PDO=8(($#DO != 0x00000000 J)
TESE AL Pt | Process valid PDOs and ignore invalid

then

Check if this is regular PDO or APDO, Bit31..30==11 is APDO, Bit31..30==00 is PDO

IS_APDO=S{{ ($PDO & 0xc0000000) == 1

i 1=

;Lﬁ's—”ﬂm' 1 ! Process Fixed PDOs. Report Voltage and Max Current
Print out Fixed PDO information
printf "PD0 ID-%d\nPTO=0x%.8x is a %s\n" ${{$i+1)) $PDO "Fixed PDO"
Find out profiles for Fixed PDO, refer to Table 5 of AP33772 Sink Controller EVB User Guide Section 5.3
MaxCurr=%{(((SPDO & (Dx3f<<0)}>>0) * 10)) #bit 9.0, 1LSE is 10mA
Volt=5{{ (($PDO & (0x3ff==10))=>10) * 50)) # bit 19..10, 1LSB is 50mVY
echo Voltage=5{{$Volt) m\v
echo Max Current=5{(SMaxCurr)m#A
echo

else Process APDOs. Report MadMin Voltage and Max
Print out APDO information
printf "PDH0 1D-%d\nPD0=0x% 8x is a %s\n" ${($i+1)) SFDO "APDO"™
Find out profiles for APDO, refer to Table & of AP33772 Sink Controller EVE User Guide Section 5.3
MaxCur=${(((SPDO & [Ox3f<<0)j>>0) * 50 }) # bit 6.0, 1LSB is 50mA
MinVolt=8(| (($PDO & (Dxff=<8))>=8) * 100)) #bit 15..8, 1LSB is 100m\V
MaxVolt=5{(([SFDO & (Oxf<<17)}>>17) * 100)) # bit 24_17, 1LSB is 100mV
echo Min Voltage=5({$MinVoltjjmV
echo Max Voltage=5{ [SMaxWolt)jm\/
acho Max Current=5{(SMaxCurr}jma
echo

fi

ValidPDOCN=$(($ValidPIOCHt + 1))

fi
done
acha Total SValidPDOCHt valid PDOs are detected! Einolly sopoctotel xad EDO cotm.

Code Execution and Outputs

pi@raspberrypi:~/Project/ap33772/bash § Jap33772_querypdo.bash
PDO ID:1

PDO=0x0a01912c is a Fixed PDO

Voltage=5000mV

Max Current=3000mA

PDO ID:2

PDO=0x0002d12¢ is a Fixed PDO
Voltage=9000mV

Max Current=3000mA

PDO ID:3
PDO=0x0004b12¢c is a Fixed PDO

Voltage=15000mV All PDOs’ Capabilities
Max Current=3000mA

PDO 1D:4

PDO=0x00064145 is a Fixed PDO
Voltage=20000mV

Max Current=3250mA

PDO 1D:5

PDO=0xc1a4213c is a APDO
Min Veoltage=3300mY

Max Voltage=21000mV

Max Current=3000mA

Total 5 valid PDOs are detected!

Example 2: Python SMBus2 Example: ap33772_allpdo.py3
This example checks all valid PDOs and requests them one by one in up and down order.
Code Details

#liusr/binfenv python3

This program reports all PDO information and walks through all PDOs in up and down manner

from smbus2 import SMBus
from time import sieep

RPI_IZCBUS=1 # Using Raspberry Pi 12C_1
12C_ADDR=0x51

Import SMBus

| AP33772 has 12C
12C address 0x51

address 0x51

class Pdo:

def _init__(self, word=0x00000000, pdotype="FPDO", id=0).

self word=word # PDO's word contents
self pdotype=pdotype # "FPDO" or "APDO"
self id=id # PDO id/position
if self pdotype 1= "APDO™ # FPDO
self Volt=5000
self MaxCurr=3000
else: # APDO
zelf Max\/olt=21000
self. MinVolt=3300
zelf MaxCurr=3000
def display(self):

Class definition for PDO:

Common attributes: word, , id

Fixed PDO attributes: V' and Max Current
APDO atiributes: Max/Min Voltage and Max Current
Common function: display()

print{"PDO%d: 0x%.8x %s" Y(self.id, self.word, self.pdotype))

class Rdo:

try:

def _init__(self. word=0x00000000, pdotype="FPDO", id=0}):
zelf word=word # RDO's word contents
self pdotype=pdotype # "FPDO" or "APDO"

self id=id # RDO id/position

if self pdotype != "APDO™ # FFDO
self RpoOpCurr=3000
self RpoMaxOpCurr=3000

else: # APDO
self RpoOpVolt=5000
self RpoOpCurr=3000

def display{self):

Class definition for RDO:

Common attributes: word, pdotype, id

Fixed PDO attributes: Op Current and Max Current
APDO atiributes: Op Voltage and Op Current
Common function: display()

print{"ROO%d: 0x% _8x %s" %(self.id, self word, self pdotype))

Create iZc object
i2c=SMBus(RPI_I2CBUS)
Dummy write command to flush out unfinished 12C traffic

| Create SMBus object called i2¢

#i2c.wite_i2c_block_data(l2C_ADDR, 0x30, [0x2c, 0xb1, 0x04, 0x10])

Read all 28-Byte PDO information

pdo28b=i2c.read_i2c_block_data(l2C_ADDR, 0x00, 28)

Read all 28-Byte 7 PDOs info at ona time
0x00~-0x1b

Build PDO objects based on the first 28-byte data
pdolist=list{)

ValidPDOCnt=0 # reset Valid PDO count

for i in range(0, len{pdo28b), 4):

p = Pdo()
pdolist append(p)
puid = int{v'4) + 1
pword =0

Analyze 28-Byte data and Create up to 7 PDO
wijbdts PDO type, word contents, Voltage,
and Current capability

for j in range(4):
p.word=p.word+(pdo28b{i+j]<<(8"j))

Process only valid PDO which has contents other than 0x00000000

IS_VALID_PDO=(p.word != 0x00000000)

IS VIAL IR B

Process only valid PDO which has contents other than 0x00000000
IS_VALID_PDO=(p.word != 0x00000000)

if IS_VALID_PDO:

#print("PDO 1D:%d 0x%.Bx" %(p.id, p)) APDO bit 31..30 is 0b11
ValidPDOCnt+=1 Fixed PDO bit 31..30 is
IS_APDO=({p.word & Dxc0000000)==0xc0000000) # APDO bit 31_30is 0b11
if IS_APDO:

p-MaxCurr))
else:

print{"PDO 10:%d\nPDO=0x%.8x is a APDO" %(p.id, p.word)) APDO:
p.pdotype="APDO" Max Current
p.MaxCurr=((p.word&(0x3f<<0))>>0)"50 # bit 6.0, 1LSB is S0mA Min Voltage
p.MinVoit=(p.word&(0xff<<8)j>>8)*100 #bit 15..8, 1LSB is 100mV Max Voltage
p.MaxVolt=((p.word&(0xfi<<17)j>=17)*100 #bit 24_17, 1LSB is 100mV
print("MinVoltage=%dmV\nMaxVoltage=%dm\inMax Current=%dmAin" %(p.MinVolt, p.MaxVolt,
e : i " . . s Fixed PDO:
Erﬂ;gﬁigﬁ;gn’m—ﬂn%.ﬁx is a Fixed PDO" %(p.id, p.word)) M Gt
Voltage

p.MaxCurr=({p.word&(0x3ff<<0))>>0)* 10 # bit 9.0, 1LSE is 10mA

p.Volt=((p.word&(0x3ff<<10)>>10)*50 # bit 19..10, 1LSB is S50mV
print{"Voltage="%dm\inMax Curent=%dmAln" %(p.Volt, p.MaxCurr))

print(*Total %d valid PDOs are detected!” %(ValidPDOCN) | print out valid PDO

sleep(1.0)

Delete unuzed PDOs

for i in range(ValidPDOCnt, Tk Clean up invalid PDOs
pdolist. pop(-1) and keep only valid PDOs

Print all PDO out

print{*FPDO List:")

for p in pdolist Print all PDO Information out
p.display()

sleep(1.0)

Preparing RDO for later request

rdolist=list{)

for p in pdolist: Analyze all valid PDO objects and create RDO
r=Rdoy() objects corresponding to each PDO
rdolist. append{r) with id, PDO type, word contents, Valtage,
rid=p.id and Currant to requast later
r.pdotype=p.pdotype

if p.pdotype EB"FCPDD“: #Tlgs is Fixed PDO
r.RpoOpCurr=p.MaxCurr
r.RpoMaxOpCurr=p.MaxCurr Op Current
Set position value bit30..28

Fixed PDO set:
Max Op Current

Set Operating Current in 10mA units, bit19..10
Set Max Operating Current in 10mA units, bit3..0

r.word = ((r.id & 0x7) << 28) | {int{r.RpoOpCurr/10)<<10 } | (int{r.RpoMaxOpCurr/10)<<0)
else: # This is APDO

r RpoOpVolt=p_Max\/olt APDO sat:

r.RpoOpCurr=p.MaxCurr Op Current

Set position value bit30..28 Out Voltage

Set Output Voltage in 20mV units, bit19..9 Will be changed later.

Set Operating Current in 50méA, units, bité_.0

r.word =

{(r.id & 0x7) << 28) | {int(r.RpoOpWoit/20)<<3) | (int{r. RpoMaxOpCur/50}<<0)

Print all RDO out

print("RDO List:") Print all PDO information out
for p in rdolist:

p.display()

print(®
print(“Start requesting PDOs")
print(™)

RDO submission

cmdcnt=0

rejent=0 Index runs up and down all PDO until
while True: | : 3 - 5

for i in list{range(ValidPDOCnt-1))+list{reversed{range(1, ValidPDOCnt))):
cmdcnt=cmdcnt+1
Request PDO by writing to 0x30~0x33

Send out the chosen RDO and check if
status bit is set for successful accept

i2c.write_i2c_block_data{l2C_ADDR, Dx30, [{rdolist[i] word>>D)&0xf, (rdofistfi] word>>8)&0x,

(rdolist[i]. word=>16)&0xff, (rdolist[i] word=>=>24)80xff])
sleep(0.5)
status = i2c.read_byte_data(l2C_ADDR, 0x1d)

if (status & 0x02) = OxD2: Read and report voltage, current, and temperature

rejent=rejent+1

voltage = i2c.read_byte_data(12C_ADDR, 0x20) * 80 # 80mV per LSB
cument = i2c.read_byte_data{l2C_ADDR, 0x21) * 24 # 24mA per LSB

temperature = i2c read_byte_data(12C_ADDR, 0x22)

pl'int{'PDD%d:\tTDlﬂ:%T-mtstah.vs 0x%. 2xtRejects=%d\V=26dmV\tI=%dmAMT=2%dC" %((i+1), cmdcnt, status, rejent,

voltage, current, temperature))

#sleep(0.3)

The following command will never be reached due to "while True" command! Actually cbject closure is done in except condition.

i2c close()

Exce ndlin, raceful
except Keyboardinterrupt: pion b g for grz prosram closure

If there is a Keyboardinterrupt {when you press ctri+c), exit the program and cleanup

print("Break detected!")
if i2c:
i2c close()

Code Execution and Outputs

piras pherrypi:~Projectapa3TT2ipy3 § /ap3arT2_sipdo.py3
PDOD ID:1

PDOs0x0201912¢ Is & Fixed POC

Veltage=5000my

Max Cument=3000maA

PDONID:2

PDO=0x0002d12¢ s a Fixed POO
Veltage=9000my

Max Curreni=3000mA

FDO D3
PDO=0x0004b12¢ is a Fixed PDO

Voltages15000mY
Mz Currents3000ms A SO CHnn

PDOID:4

PDO=0x00064145 is a Fixed PDO
VoltagesZ0000m\

Max Curment=3250mA

PDO D5
PDO=0xc1a4213¢ |2 a APDO
Minaltages3300my

Tolal 5 valid FDOs are detected!
FDO List

PDON. Dxda01812c FPDO
PDOZ: 0002412 FPDO
FPDO3: Dx0004812¢ FPDOD
FPDO4: Dn00064145 FFDIO
PDOS: Dne 1842136 APDO
RDO List:

RDO1: 0x1004b12c FFDO
RDOZ: 0x2004b12c FFDO
RDOG: 0x3004012C FFDO
RDO4: 0x40051545 FPDO
RDCS: 0x5008343C APDO

WA YA 0 CETE A7 ARV CO AT MR ITANET A 000 A0 LAY Y AP ATAAIY I P AT T W A 0 T A o

Start reguestng PDOs

PDO1: Totab1 stabus0x03 Rejecis=l VeS040my I=48mA Tw25C
PDO2: TotakZ status:Dx0Z Rejectssl Ved0d0my I=T2mA Te250
PDO3: Tolak3 statusOx02 Rejacts=l Ve l5200mY I=*36mA Tu25C
PDO4: Totabd stalie:0x02 Rejactz=D VeZ0160m 1= 120mA, Tw23C
PDOS: Totats statue:0x02 Rejactzs=0 We20400mt = 120mA Tw23C
PDO4: Total® atatue:0x02 Rejactz=0 VeZ0180mY = 120mA, Tez3C
PDO3. TotalT status:0x02 Rejacts=D Ve 15200mN =3EmA T=23C
PDDZ. TotalE ataliue:0x02 Rejactz=D Vag040my 1=72ZmA Tw25C
PDO1: Totald status0x02 Rejectz=0 Ve S040m\ I=48mA Tw25C
PDOZ. Total 10 atatis0x02 Rejactz=0 Weg040my =TZmA Tw23C
PDO3. Totab11 atatue:0x02 Rejactz=0 Ve15200mY I=36mA Tw23C
PDO4: Tolat12 atatus0x02 Rejactz=0 Ve20400mt = 120mA, T=23C
PDOD5: Totat13 atatus:0x02 Rejactz=) Ve20400mY 1= 120mA T=25C
FPDO4: Totak14 stafusDx02 Rejects=l VeZ0180mY I=120mA, Tw25C
PDO3: Totak15 stafus0x0Z Rejects=0 Ve l5200mY I=36mA Tu258

“CBreak delected]

Send RDO and Report
Status, Voltage, Currant, Temperature

Figure 8 = Example ap33772_allpdo.py Outpit Waveform

Example Code Download

List of Example Codes

> ©w P~

Example Codes have Bash Script and Python Versions

ap33772_querypdo: queries all PDO information

ap33772_reqpdo: reports all PDO information and sends out PDO request specified by user

ap33772_allpdo: reports all PDO information and walks through all PDO requests in up and down manner
ap33772_pps: reports all PDO information, and ramps up and down the entire PPS voltage range in 50mV step
size

ap33772_vit: reports voltage, current, and temperature information

Example Download Site

Example Codes can be downloaded from Github. Issue the following command to download: git clone
https://github.com/diodinciot/ap33772.git-ap33772

References

o o > w

. AP33772 Datasheet (USB PD3.0 PPS Sink Controller): hitps:/www.diodes.com/products/power-

management/ac-dc-converters/usb-pd-sink-controllers/

AP33772 12C Sink Controller EVB User Guide: https:/www.diodes.com/applications/ac-dc-chargers-and-
adapters/usb-pd-sink-controller/

Raspberry Pi Zero 2 W: https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/

Raspberry Pi OS: https://www.raspberrypi.com/software/

[2C-Tools utility:_https:/linuxhint.com/i2c-linux-utilities/

SMBus2 Module:_https://smbus2.readthedocs.io/en/latest/

Revision History

Revision Issue Date Comment Author

1.0 4/15/2022 Initial Release Edward Zhao

https://github.com/diodinciot/ap33772.git-ap33772
https://www.diodes.com/products/power-management/ac-dc-converters/usb-pd-sink-controllers/
https://www.diodes.com/applications/ac-dc-chargers-and-adapters/usb-pd-sink-controller/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/software/
https://linuxhint.com/i2c-linux-utilities/
https://smbus2.readthedocs.io/en/latest/

IMPORTANT NOTICE

» DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER
THE LAWS OF ANY JURISDICTION).

« Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements,
improvements, corrections, or other changes without further notice to this document and any product described
herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document
or any product described herein; neither does Diodes Incorporated convey any license under its patent or
trademark rights, nor the rights of others. Any Customer or user of this document or products described herein
in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the
companies whose products are represented on the Diodes Incorporated website, harmless against all
damages.

« Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased
through unauthorized sales channels.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized
application, Customers shall indemnify and hold Diodes

« Incorporated and its representatives were harmless against all claims, damages, expenses, and attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized application.

« Products described herein may be covered by one or more United States, international or foreign patents
pending. Product names and markings noted herein may also be covered by one or more United States,
international or foreign trademarks.

« This document is written in English but may be translated into multiple languages for reference. Only the

English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

« Diodes Incorporated products are specifically not authorized for use as critical components in life support
devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated.
As used herein:

o A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use
provided in the labeling can be reasonably expected to result in significant injury to the user.

« B. A critical component is any component in a life support device or system whose failure to perform can
be reasonably expected to cause the failure of the life support device or to affect its safety or
effectiveness.

« Customers represent that they have all necessary expertise in the safety and regulatory ramifications of
their life support devices or systems, and acknowledge and agree that they are solely responsible for all
legal, regulatory, and safety-related requirements concerning their products and any use of Diodes

Incorporated products in such safety-critical, life support devices or systems, notwithstanding any

devices- or systems-related information or support that may be provided by Diodes Incorporated.
« Further, Customers must fully indemnify Diodes Incorporated and its representatives against any
damages arising out of the use of Diodes Incorporated products in such safety-critical, life-support

devices or systems.

« Copyright © 2017, Diodes Incorporated

« www.diodes.com

Documents / Resources

DIODES AP33772 USB PD Sink Controller Raspberry Pi I12C Interface [pdf] User Guide
AP33772 USB PD Sink Controller Raspberry Pi 12C Interface, AP33772, USB PD Sink
Controller Raspberry Pi 12C Interface, Raspberry Pi I12C Interface, Pi I12C Interface

References

« @Self.ID

« 2 Diodes Incorporated - Analog, Discrete, Logic, Mixed-Signal

« & Diodes Incorporated - Analog, Discrete, Logic, Mixed-Signal

« €) GitHub - diodinciot/ap33772: Using RPI to control ap33772 sink controller through 12C
« & 12C Utilities in Linux

« EEl smbus2 — smbus?2 0.4.2 documentation

« ©_USB PD Sink Controller

« ©_USB PD Sink Controller

. 8 Buy a Raspberry Pi Zero 2 W — Raspberry Pi
» & _Raspberry Pi OS — Raspberry Pi

Manuals+, home privacy

http://www.diodes.com
https://manuals.plus/m/45162b5f8d763cb1a9f58f6e0d3c62d7af28b671ca4bd2e1deef21fb9062885c
https://manuals.plus/m/45162b5f8d763cb1a9f58f6e0d3c62d7af28b671ca4bd2e1deef21fb9062885c_optim.pdf
http://self.id
http://www.diodes.com
http://www.diodes.com/
https://github.com/diodinciot/ap33772.git
https://linuxhint.com/i2c-linux-utilities/
https://smbus2.readthedocs.io/en/latest/
https://www.diodes.com/applications/ac-dc-chargers-and-adapters/usb-pd-sink-controller/
https://www.diodes.com/products/power-management/ac-dc-converters/usb-pd-sink-controllers/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/software/
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/privacy-policy

	DIODES AP33772 USB PD Sink Controller Raspberry Pi I2C Interface User Guide
	DIODES AP33772 USB PD Sink Controller Raspberry Pi I2C Interface
	Introduction
	Validation Platform Setup
	Raspberry Pi Software Setup
	Basic Command Examples
	Practical Examples
	Example Code Download
	Example Download Site

	References
	Revision History
	IMPORTANT NOTICE

	Documents / Resources
	References

