

DELTA DVP04DA-H2 Analog Output Module Instruction Manual

Home » Delta » DELTA DVP04DA-H2 Analog Output Module Instruction Manual

Contents

- 1 DELTA DVP04DA-H2 Analog Output
- Module
- 2 Introduction
- 3 Specifications
- **4 Other Specifications**
- **5 Control Registers**
- 6 Adjusting D/A Conversion Curve
- 7 Documents / Resources
- **8 Related Posts**

DELTA DVP04DA-H2 Analog Output Module

Warning

- DVP04DA-H2 is an OPEN-TYPE device. It should be installed in a control cabinet free of airborne dust, humidity, electric shock and vibration. To prevent non-maintenance staff from operating DVP04DA-H2, or to prevent an accident from damaging DVP04DA-H2, the control cabinet in which DVP04DA-H2 is installed should be equipped with a safeguard. For example, the control cabinet in which DVP04DA-H2 is installed can be unlocked with a special tool or key.
- DO NOT connect AC power to any of I/O terminals, otherwise serious damage may occur. Please check all wiring again before DVP04DA-H2 is powered up. After DVP04DA-H2 is disconnected, Do NOT touch any terminals in a minute. Make sure that the ground terminal on DVP04DA-H2 is correctly grounded in order to prevent electromagnetic interference.

Introduction

Model Explanation & Peripherals

- Thank you for choosing Delta DVP series PLC. The data in DVP04DA-H2 can be read or written FROM/TO instructions given by the program of DVP-EH2 series MPU. The analog signal output module receives 4 groups of 12-bit digital data from PLC MPU and converts the data into 4 points of analog signals for output in either voltage or current.
- You can select voltage or current output by wiring. Range of voltage output: 0V ~ +10V DC (resolution: 2.5mV). Range of current output: 0mA ~ 20mA (resolution: 5μA).
- Product Profile (Indicators, Terminal Block, I/O Terminals)

- 1. DIN rail (35mm)
- 2. Connection port for extension modules
- 3. Model name
- 4. POWER, ERROR, D/A indicator
- 5. DIN rail clip
- 6. Terminals
- 7. Mounting hole
- 8. I/O terminals
- 9. Mounting port for extension modules

External Wiring

- **Note 1:** When performing analog output, please isolate other power wirings.
- Note 2: If the ripples at the loaded input terminal are too significant that causes noise interference on the wiring, connect the wiring to 0.1 ~ 0.47μF 25V capacitor.
- Note 3: Please connect the terminal on both the power modules and DVP04DA-H2 to the system earth point and ground the system contact or connect it to the cover of power distribution cabinet.
- Note 4: If there is much noise, please connect the terminal FG to the ground terminal.
- Warning: DO NOT wire empty terminals .

Specifications

Digital/Analog (4D/A) m odule	Voltage output Current output						
Power supply voltage	24V DC (20.4V DC ~ 28.8V DC) (-15% ~ +20%)						
Analog output channel	4 channels/module						
Range of analog output	0 ~ 10V	0 ~ 20mA					
Range of digital data	0 ~ 4,000	0 ~ 4,000					
Resolution	12 bits (1LSB = 2.5mV)	12 bits (1LSB = 5μA)					
Output impedance	0.5Ω or lower						
Overall accuracy	±0.5% when in full scale (25°C, 77°F) ±1% when in full scale within the range of	0 ~ 55°C, 32 ~ 131°F					
Responding time	3ms × the number of channels						
Max. output current	10mA (1KΩ ~ 2MΩ) –						
Tolerable load impedanc e	_	0 ~ 500Ω					
Digital data format	11 significant bits out of 16 bits are available; in 2's complement.						
Isolation	Internal circuit and analog output terminals are isolated by optical coupler. No isolatio n among analog channels.						
Protection	Voltage output is protected by short circuit. Short circuit lasting for too long may caus e damage on internal circuits. Current output can be open circuit.						
Communication mode (RS-485)	Supported, including ASCII/RTU mode. Default communication format: 9600, 7, E, 1, ASCII; refer to CR#32 for details on the communication format. Note1: RS-485 cannot be used when connected to CPU series PLCs. Note2: Use extension module wizard in ISPSoft to search or modify the control regist er (CR) in the modules.						
When connected to DV P-PLC MPU in series The modules are numbered from 0 to 7 automatically by their distance from MPU .0 is the closest to MPU and No.7 is the furthest. Maximum 8 modules are allowed connect to MPU and will not occupy any digital I/O points.							

Other Specifications

Power supply	
Max. rated power consumption	24V DC (20.4V DC ~ 28.8V DC) (-15% ~ +20%), 4.5W, supplied by external power.
Environment	
Operation/storage	Operation: 0°C ~ 55°C (temperature); 5 ~ 95% (humidity); pollution degree 2 Storage : -25°C ~ 70°C (temperature); 5 ~ 95% (humidity)
Vibration/shock immunit y	International standards: IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC 68-2-27 (TEST Ea)

Control Registers

CF # ato	R RS-			Register content	b1 5	b1 4	b1 3	b1 2	b1 1	b1 0	b9	b 8	b 7	b 6	b 5	b 4	b 3	b 2	b 1	b 0
ad	dress																			
# 0	H'40 32	0	R	Model name	Set up by the system. DVP04DA-H2 model code = H'6401. The user can read the model name from the program and see if the ext ension module exists.															
	11,40		R		Reserved CH4 CH3 CH2 CH1 Output mode: Default = H'0000 Mode 0: Voltage output (0V ~ 10V) Mod e 1: Voltage output (2V ~ 10V) Mode 2: Current output (4mA ~ 20mA)															
1	H'40 33	0	/ W	Output mode setti ng	Mode 3: Current output (0mA ~ 20mA)															

CR#1: The working mode of the four channels in the analog input module. There are 4 modes for each channel which can be set up separately. For example, if the user needs to set up CH1: mode 0 (b2 \sim b0 = 000); CH2: mode 1 (b5 \sim b3 = 001), CH3: mode 2 (b8 \sim b6 = 010) and CH4: mode 3 (b11 \sim b9 = 011), CR#1 has to be set as H'000A and the higher bits (b12 \sim

b15) have to be reserved. Default value = H'0000.

#	H'40 38	X	R / W	CH1 output value
# 7	H'40 39	Χ	R / W	CH2 output value

# 8	H'40 3A	X	R / W	CH3 output value	Range of output value at CH1 ~ CH4: K0 ~ K4,000 Default = K0 (unit: L SB)
# 9	H'40 3B	Χ	R / W	CH4 output value	
# 1 8	H'40 44	0	R / W	Adjusted OFFSET value of CH1	Range of OFFSET at CH1 ~ CH4: K-2,000 ~ K2,000
# 1 9	H'40 45	0	R / W	Adjusted OFFSET value of CH2	
# 2 0	H'40 46	0	R / W	Adjusted OFFSET value of CH3	
# 2 1	H'40 47	0	R / W	Adjusted OFFSET value of CH4	Default = K0 (unit: LSB) Adjustable voltage-range: -2,000 LSB ~ +2,000 LSB Adjustable current-range: -2,000 LSB ~ +2,000 LSB Note: When modifying CR#1, adjusted OFFSET is changed to default.
# 2 4	H'40 4A	0	R / W	Adjusted GAIN va lue of CH1	
# 2 5	H'40 4B	0	R / W	Adjusted GAIN va lue of CH2	Range of GAIN at CH1 ~ CH4: K0 ~ K4,000 Default = K2,000 (unit: LSB)
# 2 6	H'40 4C	0	R / W	Adjusted GAIN va lue of CH3	Adjustable voltage-range: 0 LSB ~ +4,000 LSB Adjustable current-range: 0 LSB ~ +4,000 LSB
# 2 7	H'40 4D	0	R / W	Adjusted GAIN va lue of CH4	Note: When modifying CR#1, adjusted GAIN is changed to default.

CR#18 \sim CR#27: Please note that: GAIN value – OFFSET value = +400LSB \sim +6,000 LSB (voltage or current). When GAIN – OFFSET is small (steep oblique), the resolution of output signal will be finer and variation on the digital value will be greater. When GAIN – OFFSET is big (gradual oblique), the resolution of output signal will be rougher and variation on the

digital value will be smaller.

#3	H'4050 X R	R Error status	Register for storing all error status. See the table of error status for more information.
----	------------	----------------	---

CR#30: Error status value (See the table below)

Note: Each error status is determined by the corresponding bit ($b0 \sim b7$) and there may be more than 2 errors o ccurring at the same time. 0 = normal; 1 = error.

Example: If the digital input exceeds 4,000, error (K2) will occur. If the analog output exceeds 10V, both analog input value error K2 and K32 will occur.

#3	H'4051	0	R/ W	Communication address	For setting up F Range: 01 ~ 25			n address	
#3	H'4052	0	R/ W	Communication format	6 communication bps / 38,400 bps s include: ASCII: 7, E, 1/3 2 / 7,N,2 / 8,E,2 RTU: 8, E, 1 / 8 Default: ASCII,9 Please refer to re details.	7,O,1 / 8,E,1 2 / 8,O,2 / 8,N 5,O,1 / 8,N,1 / 9600,7,E,1 C	s /115,20 / 8,O,1 / 8 I,2 / 8,E,2 / 8 R#32=H	0 bps. Da 8,N,1 / 7,I 3,O,2 / 8,N 0002	E,2 / 7,O,
					Reserved	CH4	CH3	CH2	CH1

#3	H'4053	0	R/ W	Return to default; OFFSET/ GAIN tuning authorization	Default = H'0000. Take the setting of CH1 for example: 1. When b0 = 0, the user is allowed to tune CR#18 (OF FSET) and CR#24 (GAIN) of CH1. When b0 = 1, the user is not allowed to tune CR#18 (OFFSET) and CR#2 4 (GAIN) of CH1. 2. b1 represents whether the OFFSET/GAIN tuning registers are latched. b1 = 0 (default, latched); b1 = 1 (non-latched). 3. When b2 = 1, all settings will return to default values. (except CR#31, CR#32)
----	--------	---	---------	---	--

CR#33: For authorizations on some internal functions, e.g. OFFSET/GAIN tuning. The latched function will stor e the

output setting in the internal memory before the power is cut off.

#3 4	H'4054	0	R	Firmware version	Displaying the current firmware version In hex; e.g. version 1.0A is indicated as H'010A.
#35	i ~ #48				For system use.

Symbols:

○: Latched (when written in through RS-485 communication);

X: Non-latched;

R: Able to read data by FROM instruction or RS-485 communication; W: Able to write data by TO instruction or RS-485 communication.

LSB (Least Significant Bit):

For voltage output: 1LSB = 10V/4,000 = 2.5mV. For current output: $1LSB = 20mA/4,000 = 5\mu A$.

- Reset Module (Firmware V4.06 or above): Having connected the external power 24V, write the reset code H'4352 in CR#0, then disconnect and reboot to complete the setup.
- CR#32 Communication Format Setting:

- **Firmware V4.04 (and lower):** Data format (b11~b8) is not available, ASCII format is 7, E, 1 (code H'00xx), RTU format is 8, E, 1 (code H'C0xx/H'80xx).
- **Firmware V4.05 (and higher):** Refer to the following table for setup. For new communication format, please take note that modules in the original setting code H'C0xx/H'80xx is to 8E1 for RTU.

	b15 ~ b12		b11 -	~ b8		b7 ~ b0		
ASCII & High	/RTU n/Low Bit Exchange of CRC	Data	a Format		Communication Speed			
Descr	iption							
H'0	ASCII	H' 0	7,E,1*1	H'6	7,E,2*1	H'0 1	4800 bps	
	RTU, No High/Low Bit Exchange of		8,E,1	H'7	8,E,2	H'0 2	9600 bps	
H'8	CRC	H' 2	_	H'8	7,N,2*1	H'0 4	19200 bps	
	RTU,	H' 3	8,N,1	H'9	8,N,2	H'0 8	38400 bps	
H'C	High/Low Bit Exchange of CR	H' 4	7,0,1*1	H'A	7,0,2*1	H'1 0	57600 bps	
		H' 5	8.O,1	H'B	8,O,2	H'2 0	115200 bps	

Ex: To setup 8N1 for RTU (High/Low Bit Exchange of CRC), communication speed is 57600 bps, write H'C310 in CR #32.

Note *1. Supports ASCII mode ONLY.

CR#0 ~ **CR#34:** The corresponding parameter addresses H'4032 ~ H'4054 are for users to read/write data by RS-485 communication. When using RS-485, the user has to separate the module with MPU first.

- 1. Function: H'03 (read register data); H'06 (write 1 word datum to register); H'10 (write many word data to register).
- 2. Latched CR should be written by RS-485 communication to stay latched. CR will not be latched if written by MPU through TO/DTO instruction.

Adjusting D/A Conversion Curve

Voltage output mode

10V M	CR#1 mode 0	GAIN = 5V (2,000 _{LSB}). OFFSET = 0V (0 _{LSB}).
↑ A nation	CR#1 mode 1	GAIN = 6V (2,400 _{LSB}). OFFSET = 2V (800 _{LSB}).
ontano of 5V GAIN 5V	GAIN	The voltage output value when the digital input value = $K2,000$. Range: $0_{LSB} \sim +4,000_{LSB}$.
2V +2.00	OFFSET +4,000	The voltage output value when the digital input value = K0. Range: -2,000 _{LSB} ~ +2,000 _{LSB} .
OFFSET	al input GAIN - OFFS	ET Range: +400 _{LSB} ~ +6,000 _{LSB} .

Current output mode

Documents / Resources

Manuals+,