

daviteq MBRTU-TBD Turbidity Sensor with Modbus RTU **Output Instruction Manual**

Home » daviteq » daviteq MBRTU-TBD Turbidity Sensor with Modbus RTU Output Instruction Manual

TURBIDITY SENSOR WITH MODBUS RTU **OUTPUT MBRTU-TBD**

• USER GUIDE FOR TURBIDITY SENSOR WITH MODBUS RTU OUTPUT MBRTU-TBD

JUL-2021

This document is applied for the following products

Contents

- 1 Introduction
- 2 Specification
- 3 Wiring
- 4 Maintenance and

Precautions

- **5 Modbus RTU Protocol**
- **6 Dimensions**
- 7 Contact
- 8 Documents / Resources
 - 8.1 References
- 9 Related Posts

Introduction

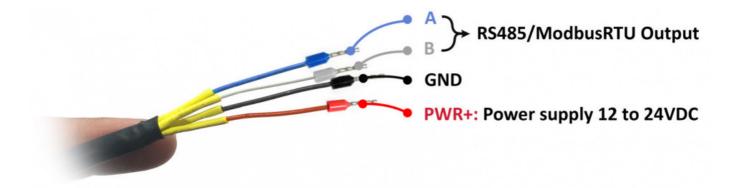
MBRTU-TBD is an advanced digital turbidity sensor for water quality monitoring, adopt the principle of scattered light, the design method of using infrared LED light source and optical fiber conduction light path. The filter design is added inside, which has strong anti-interference ability. Built in temperature sensor, automatic temperature compensation, suitable for online long-term monitoring of the environment.

PROCESS TURBIDITY SENSOR WITH MODBUS OUTPUT MBRTU-TBD

MBRTU-TBD-H1.PNG

Specification

Features


- 1. Digital sensor, direct output RS-485 digital signal, support Modbus / RTU
- 2. Principle of 90° Angle Scattering Light, the built-in temperature can be compensated automatically;
- 3. Optical fiber structure, strong resistance to external light interference
- 4. Infrared LED light source, add filter design, anti light interference, good stability
- 5. The surface shall be treated with anti-corrosion and passivation
- 6. Low power consumption and anti-interference design of internal circuit

Technical Data

Item	Specifications
Output	RS-485,MODBUS/RTU
Measuring method	90° scattered light method
Range	0 ~ 1000NTU or 0 ~ 100NTU
Accuracy	$\pm 5\%$ indication value or ± 3 NTU, choose the greater (0 ~ 1000NTU) $\pm 3\%$ indication or ± 2 NTU, choose is greater (0-100 NTU) ± 0.5 °C
Resolution	0.1NTU, 0.1°C
Working environment	0 ~ 50°C, <0.6MPa
Calibration method	Two-point calibration
Response time	30s T90
Temperature Compensation	Automatic temperature compensation (Pt1000)
Power Supply	12-24VDC±10%, 10mA;
Size	Diameter 30mm; Length 166.5mm;
Protection level	IP68□The water depth is 20 meters;
Service life	3 years or above
Cable length	5m
Sensor housing material	PVC

Wiring

Please wiring as shown below:

Wire color	Description
Brown	Power (12-24VDC)
Black	GND
Blue	RS485A
White	RS485B
Bare line	Shielding Layer

Cable line

□ 4 line AWG-24 or AWG-26 Shielding Wire.

Maintenance and Precautions

5.1 Maintenance

- Inductive electrode is basically maintenance free; It is recommended to clean up the sensor probe attachment every 30 days; Avoid the use of hard objects to cause the damage of the light guide part of the measuring probe during cleaning; Please wipe with a soft damp cloth.
- It is recommended to clean the outer surface of the sensor with water flow. If there is still debris residue, please wipe it with a wet soft cloth.

5.2 Note

- Installation measurement: avoid the installation measurement at the place where the water flow is turbulent, and reduce the influence of water bubbles on the measurement. Keep the measuring probe 2cm away from the bottom.
- The probe of the sensor is fouling or attached with more organisms, so the cleaning force can be increased appropriately. Slight scratch on the probe surface does not affect the normal use of the sensor. But pay attention not to penetrate the shell of the probe.
- Suggestion: the protective cover of our company should be selected to prevent the influence of microbial attachment on the measurement results.

5.3 Other

Problem	Possible Causes	Solution
The operation interface cannot be c	Wrong cable connection	Check the wiring mode
onnected or the measurement results are not displayed	Wrong sensor address	Check the address for errors
The measured value is too high, to o low or the value is continuously u	o in a abianta	
nstable	Other	Contact after sales

Modbus RTU Protocol

6.1 Information frame format

The default data format for Modbus communication of this sensor is:

MODBUS-RTU				
Baud rate	9600 (default)			
Device address	1 (default)			
Data bits	8 bit			
Parity check	None			
Stop bit	1bit			

• Function code 03: Read (R) register value

• Function code 06: Write (W) single register value

6.2 Register Address:

Registe r Addre ss (hex	Name	R/ W	Introductions	Number of registers (byte)	Data type
0x0100	Temperature value	R	°C value x10 (for example: the temperature of 25. 6°C is displayed as 256, the default is 1 decimal.)	1 (2 bytes)	unsigned short
0x0101	Turbidity valu	R	NTU value x10 (for example, the turbidity value of 15.1ntu is displayed as 151, with 1 decimal place by default.)	1 (2 bytes)	unsigned short
0x1000	Temperature calibration	R/ W	Temperature calibration: the written data is the ac tual temperature value X10; Read out data is tem perature calibration offset X10.	1 (2 bytes)	unsigned short
0x1001	Zero point ca libration	R/ W	Zero point calibration in air. The data written durin g calibration is 0.	1 (2 bytes)	unsigned short
0x1003	Slope calibra tion	R/ W	Calibrate in the known standard solution (50% – 100% range), and write the data as the actual value of the standard solution × 10.	1 (2 bytes)	unsigned short
0x2000	Sensor addr ess	R/ W	The default is 1, and the data range is 1-127.	1 (2 bytes)	unsigned short
0x2003	Baud rate set ting	R/ W	The default is 9600. Write 0 is 4800; Write 1 is 9600; Write 2 is 19200.	1 (2 bytes)	unsigned short
0x2020	Restore factory settin gs	w	The calibration value is restored to the default value and the written data is 0. Note that the sensor needs to be calibrated again after reset.	1 (2 bytes)	unsigned short

6.3 Data structure type Integer

unsigned int (unsigned short)

The data consists of two integers.

XXXX XXXX	XXXX XXXX
Byte1	Byte0

Float

Float, According to IEEE 754 (single precision);

The data consists of 1 sign bit, 8-bit exponent, and a 23 bit mantissa .

XXXX XXXX		XXXX XXXX	XXXX XXXX	XXXX XXXX
Byte3		Byte2 Byte1		Byte0
Sign bit Exp digit			F decimal	

6.4 Modbus RTU command:

6.4.1 Function code 03h: read register value

Host send:

1	2	3	4	5	6	7	8
AD R	03H	Start registe r high byte	Start registe r low byte	Register numb er high byte	Number of registe rs low byte	CRC low by te	CRC high byt

The first byte ADR: slave address code (= 001 ~ 254)

Byte 2 03h: read register value function code Byte 3 and 4: start address of register to be read

To read the FCC instrument,

Bytes 5 and 6: number of registers to read

Bytes 7 and 8: CRC16 checksums from bytes 1 to 6

Slave return:

1	2	3	4,5	6,7	M-1 , M	M+1	M+2
AD R	03H	total byte s	Register dat a 1	Register data 2	 Register data M	CRC low byt	CRC high byt

The first byte ADR: slave address code (= 001 ~ 254)

Byte 2 03h: return to read function code

The third byte: the total number of bytes from 4 to m (including 4 and m)

Bytes 4 to m: register data

Byte m + 1, M + 2: CRC16 check sum from byte 1 to M When the slave receives an error, the slave returns the error:

1	2	3	4	5
ADR	83H	Information code	CRC low byte	CRC high byte

The first byte ADR: slave address code (= 001 ~ 254)

Byte 2 83h: error reading register value

Byte 3 information code: 01 – function code error

03 – data error

Bytes 4 and 5: CRC16 checksums from bytes 1 to 3 6.4.2 Function code 06h: write single register value

Host send

1	2	3	4	5	6	7	8
ADR	06	Register hi gh byte add ress	Register lo w byte addr ess	Data high b	Data low by te	CRC code Low byte	CRC code High byte

When the slave receives correctly, the slave sends back:

1	2	3	4	5	6	7	8
ADR	06	Register hi gh byte add ress	Register lo w byte addr ess	Data high b yte	Data low by te	CRC code Low byte	CRC code High byte

When the slave receives an error, the slave returns:

1	2	3	4	5
ADR	86H	Error code information code	CRC code Low byte	CRC code High byte

The first byte ADR: slave address code (= 001 ~ 254)

The second byte 86h: write register value error function code Byte 3 error code information code: 01 – function code error

03 - data error

Byte 4 and 5: CRC check sum from byte 1 to 3

6.5 Command example 6.5.1 Default register

a) Change slave address: Address:0x2000 (42001) Number of registers: 1 Function code: 0x06 Default sensor address: 01

Change the Modbus device address of the sensor, and change the device address from 01 to 06. The example is

Send command: 01 06 20 00 00 06 02 08

Respond: 01 06 20 00 00 06 02 08; Note: the address is changed to 06 and stored after power failure.

b) Baud rate:

Address: 0x2003 (42004) Number of registers: 1 Function code: 0x06 Default value: 1 (9600bps)

Supported values: 0-2 (4800-19200bps)

The baud rate can be changed by the upper computer setting, and it can work without restart after the change. The baud rate saves the upper computer setting after power failure. Baud rate support 4800960019200. The baud rate of integer value allocation is as follows:

Integer	Baud rate
0	4800 bps
1	9600 bps

2	19200 bps
-	10200 000

Send command: 01 06 20 03 00 02 F3 CB

Respond: 01 06 20 03 00 02 F3 CB Note: the baud rate is changed to 19200bps and saved after power failure.

6.5.2 Function register

a) Measuring temperature command:

Address: 0x0100 (40101) Number of registers: 1 Function code: 0x03

Read sample values: 19.2°C

Send command: 01 03 01 00 00 01 85 F6

Respond: 01 03 02 00 C0 B8 14

Returns hexadecimal unsigned integer data, temperature value = integer / 10, 1 bit decimal place is reserved.

b) Turbidity measurement instruction:

Address: 0x0101 (0x40102) Number of registers: 1 Function code: 0x03

Read sample values: 9.1 NTU

Send command: 01 03 01 01 00 01 D4 36

Respond: 01 03 02 00 5B F9 BF

Register returns hexadecimal unsigned integer data, turbidity value = integer / 10, 1 decimal place reserved.

c) Continuous reading of temperature and turbidity instructions:

Address: 0x0100 (40101) Number of registers: 2 Function code: 0x03

Read sample values: Temperature 19.2 °C and turbidity 9.1 NTU

Send command: 01 03 01 00 00 02 C5 F7 Respond: 01 03 04 00 C0 00 5B BB F4

Register returns hexadecimal unsigned integer data, temperature value = integer / 10, 1 decimal place reserved Register returns hexadecimal unsigned integer data, turbidity value = integer / 10, 1 decimal place reserved.

d) Humidity measurement command:

Address: 0x0107 (40108) Number of registers: 1 Function code: 0x03

Read sample values: relative humidity 40% Send command: 01 03 01 07 00 01 34 37

Respond: 01 03 02 01 90 B9 B8

Register returns hexadecimal unsigned integer data, humidity value = integer / 10, 1 decimal place reserved.

6.5.3 Calibration instruction

a) Temperature calibration

Address: 0x1000 (41001) Number of registers: 1 Function code: 0x06

Calibration example: calibration at 25.8 ° C Send command: 01 06 10 00 01 02 0D 5B

Respond: 01 06 10 00 01 02 0D 5B

The sensor needs to be calibrated in a constant temperature environment after the temperature indication no longer fluctuates.

b) Turbidity zero calibration

Address: 0x1001 (41002) Number of registers: 1 Function code: 0x06

Calibration example: calibration in air Send command: 01 06 10 01 00 00 DC CA Respond: 01 06 10 01 00 00 DC CA

c) Turbidity slope calibration

Address: 0x1003 (41004) Number of registers: 1 Function code: 0x06

Calibration example: calibration in 50NTU turbidity solution

Send command: 01 06 10 03 01 F4 7D 1D

Dimensions

DIMENSION DRAWING OF MBRTU-TBD (Unit: mm)

MBRTU-TBD-H2.PNG

Contact

Manufacturer Daviteq Technologies Inc

No.11 Street 2G, Nam Hung Vuong Res., An Lac Ward, Binh Tan Dist., Ho Chi Minh City, Vietnam. Tel: +84-28-6268.2523/4 (ext.122)

Email: info@daviteq.com | www.daviteq.com

Documents / Resources

TURBIDITY SENSOR WITH MODBUS RTU OUTPUT MBRTU-TBD

daviteq MBRTU-TBD Turbidity Sensor with Modbus RTU Output [pdf] Instruction Manual MBRTU-TBD Turbidity Sensor with Modbus RTU Output, MBRTU-TBD, Turbidity Sensor with Modbus RTU Output, Modbus RTU Output, RTU Output, Output, Output ut

References

- Daviteg Nhà sản xuất cảm biến đo lường và hệ thống loT
- daviteq.com/en/manuals/uploads/images/gallery/2020-06/1tNNET2vHkT8A7Qd-logo-01.png
- daviteq.com/en/manuals/uploads/images/gallery/2021-07/GxzcKqldu4F5xH1M-MBRTU-TBD-H9.jpg
- daviteq.com/en/manuals/uploads/images/gallery/2021-07/QHsT7JggKOlykRtw-MBRTU-TBD-H1.png
- daviteq.com/en/manuals/uploads/images/gallery/2021-07/qhxgDujr0Lx8CJpX-MBRTU-TBD-H2.png
- User Manual

Manuals+, Privacy Policy