
Home » DAMN » DAMN I2C Non Volatile Ferroelectric Ram Breakout Instruction Manual

Contents
1 DAMN I2C Non Volatile Ferroelectric Ram
Breakout
2 Product Usage Instructions
3 Frequently Asked Questions
4 General Description
5 API Guide
6 Write Operations
7 Other Operations
8 Operation Codes
9 Documents / Resources

9.1 References
10 Related Posts

DAMN I2C Non Volatile Ferroelectric Ram Breakout

DAMN I2C Non Volatile Ferroelectric Ram Breakout Instruction
Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/damn
https://manuals.plus/damn/i2c-non-volatile-ferroelectric-ram-breakout-manual.pdf
https://manuals.plus/#damn_i2c_non_volatile_ferroelectric_ram_breakout
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#frequently_asked_questions
https://manuals.plus/#general_description
https://manuals.plus/#api_guide
https://manuals.plus/#write_operations
https://manuals.plus/#other_operations
https://manuals.plus/#operation_codes
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Specifications

Device: DamnI2C USB Dongle

Operating Voltage: 3.3V

Application Pins: SCL, SDA, GND

Software: Windows application for I2C operations

API Support: Python and other languages with Serial Communications

Interface: USB Serial Device (COMx)

Product Usage Instructions

Setting up DamnI2C Dongle

1. Connect the DamnI2C Dongle to your PC via USB.

2. Connect the application pins (SCL, SDA, GND) to your target circuit.

3. Use the provided software or API to control the dongle.

Using DamnI2C Software

1. Download the software from www.damntools.com.

2. Launch the software on your Windows PC.

3. Perform various I2C operations like Bus Scan, Register Read/Write, etc.

API Guide for Custom Applications

Refer to the API Guide for detailed information on integrating DamnI2C with Python or other supported
programming languages.

Frequently Asked Questions

Q: What is the operating voltage of the DamnI2C Dongle?

A: The DamnI2C Dongle operates at 3.3V.

Q: Where can I download the DamnI2C software?

http://www.damntools.com

A: You can download the software from www.damntools.com.

General Description

DamnI2C is a PC-controlled I2C-Master device consisting of a USB dongle and accompanying PC software.

The DamnI2C Dongle has three application pins that should be connected to your target circuit: SCL, SDA, and

GND. It operates at 3.3V and includes two jumpers to pull up the SCL and SDA lines if needed.

The PC software is an extremely user-friendly Windows application that allows you to perform various I2C

operations such as Bus Scan, Single Register Read/Write, Register Block Read/Write, and more.

Customers can either use the provided software or the API documented here to create their applications using

Python or any programming language that supports Serial Communications. The dongle appears as a USB

Serial Device (COMx).

The software can be downloaded from www.damntools.com.

API Guide

Important considerations

Number Notation

All the number notations are in decimal except the ones beginning with the notation “0x” which are in

http://www.damntools.com
http://www.damntools.com

hexadecimal.

I2C Device Address Byte Notation

All references to the I2C Device Addresses are ‘shifted,’ meaning the R/W bit (LSB) is not included in the

Device Address. The Device Address is shifted one position to the right to avoid confusion between read and

write operations.

Example: An EEPROM with a Read Address of 160 and a Write Address of 161 has a Shifted I2C Device

Address of 80.

I2C Device Address Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 0 0 0 0 R/W

80

I2C Charts Legend

The API Guide includes I2C frame captures showing the results of the operations described in each section.

The I2C chart legend is as follows:

Read Operations

Single Register Read Description

The Single Register Read operation reads a specific register. The PC must specify the I2C Device Address, the

Register to Read, and whether the Register address is 16-bit or 8-bit. A 16-bit Register Addressing is used for

EEPROM memories with more than 255 registers, as more than one byte is required to address registers

higher than 255. An 8-bit addressing is used for EEPROMs with 255 or fewer registers.

The DamnI2C dongle can respond with two different function codes: Function Code 2, which returns the read

value if the operation is successful, or Function Code 3 if an error occurs. The Error ID is also provided in the

event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6 7 8 9

Frame St
art

Frame Size (24-bit)
Frame Type

I2C Device Add
ress

Register to R
ead Frame E

nd
Hi Mid Lo Hi Lo Hi Lo

1 0 0 10

1 = Random Read Req
uest

(8-bit Addressing)
X X X X 4

10 = Random Read Re
quest

(16-bit Addressing)

Responses

Response 1: Single Register Read Operation Succeed

Byte in
dex: 0 1 2 3 4 5 6

Byte D
escripti
on:

Frame St
art

Frame Size (24-bit)
Frame Type Read Val

ue
Frame En
dHi Mid Lo

Byte va
lue: 1 0 0 7 2 = Random Read Answer Ok x 4

Response 2: Single Register Read Operation Error

Byte in
dex: 0 1 2 3 4 5 6

Byte
Descrip
tion:

Frame St
art

Frame Size (24-bit)

Frame Type ID Error Frame End

Hi Mid Lo

 Byte v
alue: 1 0 0 7 3 = Random Read Answer Error

1: General
error

2: Busy

3: Timeout

 4

Example: 16-bit addressing Read

The PC wants to read from a 16-bit addressing EEPROM with the address 0x80 the register 3.

Request

1, 0, 0, 10, 10, 0, 80, 0, 3, 4

Response

1, 0, 0, 7, 2, 149, 4

The read value is 149.

I2C Output

Example: 8-bit addressing Read

The PC wants to read from an 8-bit addressing EEPROM with the address 0x80 the register 3.

Request

1, 0, 0, 10, 1, 0, 80, 0, 3, 4

Answer

1, 0, 0, 7, 2, 59, 4

The read value is 59.

I2C Output

Block Read Description

The Block Read operation performs a massive read of the contiguous number of registers. The PC must

specify the I2C Device ID, the starting register, the total amount of registers to read (1 to 2000), and whether

the register addressing is 16-bit or 8-bit.

A 16-bit register address is used for EEPROM memories with more than 255 registers, as more than one byte is

required to address registers higher than 255. An 8-bit address is used for EEPROMs with 255 or fewer

registers.

The DamnI2C dongle can respond with two different function codes: Function Code 8, which returns the

read value if the operation is successful, or Function Code 9 if an error occurs. The Error ID is also provided in

the event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte in
dex: 0 1 2 3 4 5 6 7 8 9 10 11

 Byte D
escripti
on: Frame

Start

Frame Size (
24-bit)

 Frame Type

I2C Device
Address

Start Reg
ister

Quantity
of Registe
rs

(1 to 2000)
 Frame
End

 Hi Mi
d Lo Hi Lo Hi Lo Hi Lo

Byte
value: 1 0 0 12

7 = Block Read Request

(8-bit Addressing) x x x x x x 4

12 = Block Read Reques
t

(16-bit Addressing)

41 = Block Read In Bus
Stress Mode

(8-bit Addressing)

42 = Block Read In Bus
Stress Mode

(16-bit Addressing)

 43 = Stop Bus Stress Mo
de

Responses

Response 1: Block Read Operation Succeed

Byte in
dex: 0 1 2 3 4 5 6 7 … Last

Byte D
escripti
on:

Frame
Start

Frame Size (24-bit)
Frame Type

Start Registe
r Data Frame

End
Hi Mid Lo Hi Lo

Byte va
lue: 1

[Quantity of Registers of
the Bloc

Read Request] + 8

8 = Block Read
Answer Ok x x

Read

Value 1

Read

Value n 4

Response 2: Block Read Operation Error

Byte in
dex: 0 1 2 3 4 5 6

Byte D
escripti
on:

Frame St
art

Frame Size (24-bit)
Frame Type ID Error Frame End

Hi Mid Lo

 Byte v
alue: 1 0 0 7 9 = Block Read Answer Error

1: General e
rror

2: Busy

3: Timeout

4

Example: 16-bit addressing Block Read

The PC wants to read from a 16-bit addressing EEPROM with the address 0x80, the registers 300, 301, 302.

Request

To perform the operation, we should indicate the start address is 300 and that the number of bytes to read is 3:

1, 0, 0, 12, 12, 0, 80, 1, 44, 0, 3, 4

Response

1, 0, 0, 11, 8, 1, 44, 94, 59, 96, 4

The read values are 94, 59, and 96.

I2C Output

Example: 8-bit addressing Block Read

The PC wants to read from a 16-bit addressing EEPROM with the address 0x80, the registers 20, 21, 22.

Request

1, 0, 0, 12, 7, 0, 80, 0, 20, 0, 3, 4

Response

1, 0, 0, 11, 8, 0, 20, 255, 255, 255, 4

The read values are 255, 255, 255.

I2C Output

Current Address Read Description

The Current Address Read operation performs a read wherever the register addressing pointer is. The PC must

specify only the I2C Device ID and whether the register addressing is 16-bit or 8-bit. A 16-bit register address is

used for EEPROM memories with more than 255 registers, as more than one byte is required to address

registers higher than 255. An 8-bit address is used for EEPROMs with 255 or fewer registers.

The DamnI2C dongle can respond with two different function codes: Function Code 34, which returns the

read value if the operation is successful, or Function Code 35 if an error occurs. The Error ID is also provided in

the event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6 7

Frame Sta
rt

Frame Size (24-bit)
Frame Type

I2C Device Addr
ess Frame En

d
Hi Mid Lo Hi Lo

1 0 0 8

26 = Current Address Read Req
uest

(8-bit Addressing)
X X 4

27 = Current Address Read Req
uest

(16-bit Addressing)

Response

Response 1: Current Address Read Operation Succeed

Byte index: Byte description Byte value

0 1 2 3 4 5 6

Frame Start
Frame Size (24-bit)

Frame Type Read Value Frame En
d

Hi Mid Lo

1 0 0 7 34 = Current Address Read Answ
er Ok x 4

Response 2: Current Address Read Operation Error

Byte index: Byte description Byte value

0 1 2 3 4 5 6

Frame Start

Frame Size (24-bit)

Frame Type ID Error Frame E
nd

Hi Mid Lo

1

0

0

7

35 = Current Address Read Answ
er Error

1: General err
or

2: Busy

3: Timeout

 4

Example: Current Address Read

The PC wants to read the current address from an EEPROM with the address 0x80.

Request

1, 0, 0, 8, 27, 0, 80, 4

Response

1, 0, 0, 7, 34, 255, 4

The read value is 255.

I2C Output

Write Operations

Single Register Write Description

Single Register Write operation performs a write of a specific value. The PC must specify the I2C Device

Address, the Register to Write, and whether the Register address is 16-bit or 8-bit. A 16-bit Register

Addressing is used for EEPROM memories with more than 255 registers, as more than one byte is required to

address registers higher than 255. An 8-bit addressing is used for EEPROMs with 255 or fewer registers.

The DamnI2C dongle can respond with two different function codes: Function Code 5, which returns the read

value if the operation is successful, or Function Code 6 if an error occurs.

The Error ID is also provided in the event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6 7 8 9

Frame Sta
rt

Frame Size (24-bit)

Frame Type

I2C Device Add
ress

Register to

Write

Frame E
nd

Hi Mid Lo Hi Lo Hi Lo

1 0 0 11

4 = Random Write Req
uest

(8-bit Addressing)
X X X X 4

11 = Random Write Re
quest

(16-bit Addressing)

Response

Response 1: Single Register Write Operation Succeeds

Byte in
dex: 0 1 2 3 4 5 6

Byte
Descrip
tion:

Frame Start

Frame Size (24-bit
)

Frame Type Data Frame End

Hi Mid Lo

Byte val
ue: 1 0 0 7 5 = Random Write Answer OK Don’t care 4

Response 2: Single Register Write Operation Error

Byte in
dex: 0 1 2 3 4 5 6

Byte D
escripti
on:

Frame Start

Frame Size (24-bit
)

Frame Type ID Error Frame End

Hi Mid Lo

 Byte v
alue: 1

0

0

7
 6 = Random Write Answer Err
or

1: General
error

2: Busy

3: Timeout

 4

Example: 16-bit addressing Single Register Write

The PC wants to write the value 12 to address 300 of a 16-bit addressing EEPROM with a Device Address of

80.

Request

1, 0, 0, 11, 11, 0, 80, 1, 44, 12, 4

Answer

1, 0, 0, 7, 5, 0, 4

Operation Succeed.

I2C Output

Example: 8-bit addressing Single Register Write

The PC wants to write the value 12 to address 50 of an 8-bit addressing EEPROM with a Device Address of 80.

Request

1, 0, 0, 11, 4, 0, 80, 0, 50, 12, 4

Response

1, 0, 0, 7, 5, 0, 4

Operation Succeed.

I2C Output

Block Write Description

The Block Write operation performs a massive write of the contiguous number of registers. The PC must

specify the I2C Device ID, the starting register, the register values to write (1 to XXX), and whether the register

addressing is 16-bit or 8-bit.

A 16-bit register address is used for EEPROM memories with more than 255 registers, as more than one byte is

required to address registers higher than 255. An 8-bit address is used for EEPROMs with 255 or fewer

registers.

The DamnI2C dongle can respond with two different function codes: Function Code 24, which returns the read

value if the operation is successful, or Function Code 25 if an error occurs. The Error ID is also provided in the

event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6 7 8 9 10 n Last

Frame
Start

Frame Size (24-
bit)

Frame Type

I2C Device

Address
Starting Regi
ster Values Frame

End

Hi Mid Lo Hi Lo Hi Lo 1st 2nd n

1 0 0 10

20 = Block Write Requ
est

(8-bit Addressing)
x x x x x x x 4

21 = Block Write Requ
est

(16-bit Addressing)

Response

Response 1: Bloc Write Operation Succeed

Byte in
dex: 0 1 2 3 4 5 6

Byte D
escripti
on:

Frame Sta
rt

Frame Size (24-bit)
Frame Type Read Value Frame

EndHi Mid Lo

Byte va
lue: 1 0 0 7 24 = Block Write Answer

Ok x 4

Response 2: Block Write Operation Error

Byte in
dex: 0 1 2 3 4 5 6

Byte
Descrip
tion:

Frame St
art

Frame Size (24-bit)
Frame Type ID Error Frame

EndHi Mid Lo

Byte val
ue:

1

0

0

7

25 = Block Write Answer E
rror

1: General error

2: Busy

3: Timeout

4

Example: 16-bit addressing Block Write

The PC wants to write the values 12, 13, 14, and 15 to the Starting Address 300 of a 16-bit addressing

EEPROM with a Device Address of 80.

Request

1, 0, 0, 14, 21, 0, 80, 1, 44, 12, 13, 14, 15, 4

Response

1, 0, 0, 7, 24, 0, 4

Operation Succeed.

I2C Output

Example: 16-bit addressing Block Write

The PC wants to write the values 12, 13, 14, and 15 to the Starting Address 300 of an 8-bit addressing

EEPROM with a Device Address of 80.

Request

1, 0, 0, 14, 20, 0, 80, 0, 50, 12, 13, 14, 15, 4

Response

1, 0, 0, 7, 24, 0, 4

Operation Succeed.

I2C Output

Current Address Write Description

The Current Address Write operation performs a write where the register addressing pointer is. The PC must

specify the I2C Device ID, the data to write, and whether the register addressing is 16-bit or 8-bit.

A 16-bit register address is used for EEPROM memories with more than 255 registers, as more than one byte is

required to address registers higher than 255. An 8-bit address is used for EEPROMs with 255 or fewer

registers.

The DamnI2C dongle can respond with two different function codes: Function Code 36, which returns the read

value if the operation is successful, or Function Code 37 if an error occurs. The Error ID is also provided in the

event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6 7 8

 Frame St
art

Frame Size

(24-bit) Frame Type

I2C Device Ad
dress Data to Wr

ite
 Frame En
d

Hi Mid Lo Hi Lo

1 0 0 12

30 = Current Address Write Req
uest

(8-bit Addressing)
x x x 4

31 = Current Address Write Req
uest

(16-bit Addressing)

Responses

Response 1: Current Address Write Operation Succeed

Byte in
dex: 0 1 2 3 4 5 6 7 n Last Byt

e

Byte D
escripti
on:

Fram
e Sta
rt

Frame Size (24-bi
t)

Frame Type

Start Registe
r

Data Frame E
nd

Hi Mid Lo Hi Lo

Byte
value: 1

[Quantity of
Registers of

the Bloc Read Re
quest] + 8

36 = Current Address Write
Answer Ok x x

Read

Valu
e 1

Read

Value
n

4

Response 2: Current Address Write Operation Error

Byte in
dex: 0 1 2 3 4 5 6

Byte D
escripti
on:

Frame Sta
rt

Frame Size (24-bit)

Frame Type ID Error Frame
End

Hi Mid Lo

Byte va
lue:

1

0

0

7

37 = Current Address Write An
swer Error

1: General error

2: Busy

3: Timeout

4

Example: Current Address Write

The PC wants to write the value 15 to the current location of the address pointer. This operation is risky

because the exact write location is not explicitly known. Additionally, EEPROMs do not support this type of

operation.

Request

1, 0, 0, 9, 30, 0, 80, 15, 4

Response

1, 0, 0, 7, 36, 0, 4

Operation Succeed.

I2C Output

Other Operations

I2C Bus Scan Description

This operation scans the I2C Device Addresses from 0 to 127 to check for available chips on the bus.

The DamnI2C Dongle can respond with two different function codes:

1. Function Code 18: This code indicates that the operation succeeded and returns an array of 127 bytes, each

representing one of the 127 possible I2C device addresses on the bus. The first byte corresponds to I2C device

address 0, the second byte to address 1, and so on. A value of 1 in the array indicates an error, meaning the

device was not detected, while a value of 0 means the device was detected.

2. Function Code 19: This code indicates that the bus scan operation could not be completed. Note that Function

Code 19 should not be confused with a successful bus scan that found no I2C devices; in the latter case, the

scan operation succeeds, but no devices are detected.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte in
dex: 0 1 2 3 4 5 6

Byte D
escripti
on:

Frame Start
Frame Size (24-bit)

Frame Type Data Frame End
Hi Mid Lo

Byte va
lue: 1 0 0 7 17 = Bus Scan Reque

st
Don’t car
e 4

Responses

Response 1: Bus Scan Operation Succeeds

0 1 2 3 4 5 6 7 8 9 10 n Last byte

Fram
e Sta
rt

Frame Size (24
-bit)

Frame Type

I2C Devic
e

Address

Start Regist
er

I2C Device Detected Valu
e Frame E

nd

Hi Mid Lo Hi Lo Hi Lo Device
0

Device
1

Device
N

1 0 0 134
18 = Bus Scan

Answer Ok x x x x

0: I2C Device ID Detected

1: I2C Device ID Not Detect
ed

4

Response 2: Bus Scan Operation Error

Byte in
dex: 0 1 2 3 4 5 Last byte

Byte D
escripti
on:

Frame Start
Frame Size (24-bit)

Frame Type Error ID Frame End
Hi Mid Lo

Byte va
lue:

1

0

0

7

19 = Bus Scan Answer Err
or

1: General e
rror

2: Busy

3: Timeout

4

Example I2C Bus Scan

The PC wants to discover which I2C devices are present on the bus.

Request

1, 0, 0, 7, 17, 0, 4

Response

1, 0, 0, 134, 18, 1,

1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4

All the ‘ones’ after the number 18 in the response correspond to the tested I2C device addresses that did not

respond to the call, indicating they were not present on the bus.

A ‘zero’ appears at position 80, indicating that a chip is responding at I2C device address 80. Therefore, only

one chip is present on the bus at that address.

I2C Output

The full frame capture is not shown due to the large amount of data. Instead, only the relevant part of the frame

where address 80 is detected is shown.

I2C devices at addresses 79 and 81 are not detected, making it highly likely that there are no chips with those

addresses. The device at I2C address 80 is detected, indicating that a chip with this address exists on the bus.

Get DamnI2C Dongle Status Description

This operation checks if the DamnI2C Dongle is responding or not. It can be understood as the ping command

in the networking world.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6

Frame Start
Frame Size (24-bit)

Frame Type Data Frame End
Hi Mid Lo

1 0 0 7 15 = DamnI2C Dongle Status Re
quest Don’t care 4

Response

Byte in
dex: 0 1 2 3 4 5 6 7 8 to 19 20

Byte D
escripti
on:

Fra
me
Star
t

Frame Size (2
4-bit)

Frame Type

Data
Frame
End

Hi Mi
d Lo State FW Versi

on
HW Versi
on

Not use
d

Byte va
lue: 1 0 0 21

16 = DamnI2C Dongle s
tatus

Request

0: Rea
dy x x Don’t ca

re 4

Example DamnI2C Dongle Status Request

1, 0, 0, 7, 15, 0, 4

Response

1, 0, 0, 7, 16, 0, 4

A dongle is Ready.

I2C Output

This operation does not perform any I2C action.

Configure I2C Speed Description

This operation changes the I2C Bus speed.

The DamnI2C dongle can respond with two different function codes: Function Code 39, which returns the read

value if the operation is successful, or Function Code 40 if an error occurs. The Error ID is also provided in the

event of an error.

For both Request and Response, the frame structure includes:

Frame Start: Represented by the value 1.

Frame End: Represented by the value 4.

Frame Size: A 24-bit value indicating the total number of bytes in the frame.

These values help identify the start and end of the frame.

Request

Byte index: Byte description Byte value

0 1 2 3 4 5 6

Frame Start
Frame Size (24-bit)

Frame Type Data Frame End
Hi Mid Lo

1 0 0 7 38 = Configure I2C Speed

0: 100kHz

1: 400kHz

2: 1000kHz

4

Response

Response 1: Configure I2C Bus Speed Operation Succeed

Byte index: Byte description Byte value

0 1 2 3 4 5 6

Frame Sta
rt

Frame Size (24-bit)
Frame Type Data Frame End

Hi Mid Lo

1

0

0

7

39 = Configure I2C Speed Answer O
k

0: 100kHz

1: 400kHz

2: 1000kHz

4

Response 2: Configure I2C Bus Speed Operation Error

Byte index: Byte description Byte value

0 1 2 3 4 5 6

Frame Sta
rt

Frame Size (24-bit)

Frame Type Data Frame End

Hi Mid Lo

1 0 0 7 40 = Configure I2C Speed Answer Err
or Don’t care 4

Example DamnI2C Dongle Status Request

1, 0, 0, 7, 38, 1, 4

Response

1, 0, 0, 7, 39, 1, 4

Operation Succeed.

I2C Output

This operation does not perform any I2C action.

Operation Codes

Code Description

1 Random Read Request (8-bit Address)

2 Random Read Answer Ok

3 Random Read Answer Error

4 Random Write Request (8-bit Register Address)

5 Random Write Answer OK

6 Random Write Answer Error

7 Block Read Request (8-bit Device Address, 8-bit Register Address)

8 Block Read Answer Ok

9 Block Read Answer Error

10 Random Read Request (16-bit Register Address)

11 Random Write Request (16-bit Register Address)

12 Block Read Request (8-bit Device Address, 16-bit Register Address)

13 Block Read Request (10-bit Device Address, 8-bit Register Address) NOT IMPLEMENTED

14 Block Read Request (10-bit Device Address, 16-bit Register Address) NOT IMPLEMENTED

15 DamnI2C Status Request

16 DamnI2C Status Answer

17 Bus Scan Request

18 Bus Scan Answer Ok

19 Bus Scan Answer Error

20 Block Write Request (8-bit Device Address, 8-bit Register Address)

21 Block Write Request (8-bit Device Address, 16-bit Register Address)

22 Block Write Request (10-bit Device Address, 8-bit Register Address) NOT IMPLEMENTED

23 Block Write Request (10-bit Device Address, 16-bit Register Address) NOT IMPLEMENTED

24 Block Write Answer Ok

25 Block Write Answer Error

26 Current Address Read Request (8-bit Register Address)

27 Current Address Read Request (16-bit Register Address)

28 Current Address Read Request (10-bit Device Address, 8-bit Register Address) NOT IMPLEMENTED

29 Current Address Read Request (10-bit Device Address, 16-bit Register Address) NOT IMPLEMENTED

30 Current Address Write Request (8-bit Device Address, 8-bit Register Address)

31 Current Address Write Request (8-bit Device Address, 16-bit Register Address)

32 Current Address Write Request (10-bit Device Address, 8-bit Register Address) NOT IMPLEMENTED

33 Current Address Write Request (10-bit Device Address, 16-bit Register Address) NOT IMPLEMENTED

34 Current Address Read Answer Ok

35 Current Address Read Answer Error

36 Current Address Write Answer Ok

37 Current Address Write Answer Error

38 Configure I2C Speed Request

39 Configure I2C Speed Response Ok

40 Configure I2C Speed Response Error

41 Block Read In Bus Stress Mode (8-bit Device Address, 8-bit Register Address)

42 Block Read In Bus Stress Mode (8-bit Device Address, 16-bit Register Address)

43 Stop Bus Stress Mode

Documents / Resources

DAMN I2C Non Volatile Ferroelectric Ram Breakout [pdf] Instruction Manual
I2C Non Volatile Ferroelectric Ram Breakout, I2C, Non Volatile Ferroelectric Ram Breakout, Fer
roelectric Ram Breakout, Ram Breakout

References

 damntools.com

 damntools.com

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/1f867b65ec1b90a76251853057fa6d8cfd74f1e74850f094873c3b88040b0fdb
https://manuals.plus/m/1f867b65ec1b90a76251853057fa6d8cfd74f1e74850f094873c3b88040b0fdb_optim.pdf
http://www.damntools.com
http://www.damntools.com/
https://manual.tools/?p=14619839#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	DAMN I2C Non Volatile Ferroelectric Ram Breakout Instruction Manual
	DAMN I2C Non Volatile Ferroelectric Ram Breakout
	Product Usage Instructions
	Frequently Asked Questions
	General Description
	API Guide
	Write Operations
	Other Operations
	Operation Codes
	Documents / Resources
	References

