
☰

Home » Contentstack » CONTENTSTACK CMS Connector API Contentful Owner’s Manual

Contents [hide]

1 CONTENTSTACK CMS Connector API Contentful

2 Overview

3 Installation

4 Key Functions

5 How to Use

6 Description

7 Output File

8 Internal Logic

9 Error Handling

10 Validator Contentful

11 FAQ

12 Documents / Resources

12.1 References

CONTENTSTACK CMS Connector API Contentful

 Manuals+

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/contentstack
https://manuals.plus/contentstack/cms-connector-api-contentful-manual.pdf

Specifications

Product: CMS Connector API – Contentful

Description: The migration-contentful package simplifies the process of migrating

data from Contentful to Contentstack CMS by providing utility functions for extracting

content types, mapping fields, and handling locales.

CMS Connector API – Contentful

This document outlines the functionalities and usage of the migration-contentful

package, which is designed to simplify the process of migrating data from Contentful to

Contentstack CMS. It provides key utility functions for extracting content types, mapping

fields, and handling locales, ensuring a smooth and efficient migration process. The

following sections detail the installation, available functions, and their specific behaviors.

migration-contentful Package

Overview

The migration-contentful package is used to simplify the process of migrating data from

Contentful to Contentstack CMS. It helps with extracting content types, mapping fields,

and handling locales. This package contains key utility functions to facilitate these tasks.

Installation

In your package.json, you reference this package from your local file system like this:

JavaScript

“dependencies”: {

“migration-contentful”: “file:migration-contentful”

}

This makes the migration-contentful package available locally without the need to fetch it

from an external registry like npm.

Key Functions

You can import the following functions from the package to use in your project:

1. extractContentTypes:

This function extracts content types from the exported Contentful data and saves

them locally.

It processes the data to create a structured format that can be used for migration

to another CMS. const { extractContentTypes } = require(‘migration-contentful’);

2. createInitialMapper:

Once the content types are extracted, this function transforms them into a

mapping schema. This schema helps in migrating the data by ensuring fields are

mapped correctly between systems. const { createInitialMapper } =

require(‘migration-contentful’);

3. extractLocale:

This function extracts locale information (languages and region data) from

Contentful exports. This is crucial for migrating content with language variations to

the new CMS. const { extractLocale } = require(‘migration-contentful’);

How to Use

To use the functions in your code, simply import them like this:

JavaScript

const { extractContentTypes, createInitialMapper, extractLocale } = require(‘migration-

contentful’);

These functions will allow you to:

Extract content types from a Contentful export.

Create a field mapping based on the extracted data.

Extract and manage locales for migrating language data

extractContentTypes Function

Overview

This module provides utilities to extract and save Contentful content type definitions

along with their associated editor interfaces. The data is processed and saved as

structured JSON files for use in CMS migration or synchronization pipelines.

Function: extractContentTypes(filePath, prefix)

Description

If you have any questions, please reach out to tso-migration@contentstack.com.

Reads a file containing Contentful content types and editor interfaces, processes

them, and saves each content type in a structured format.

Parameters:

filePath (string): Path to the file containing the exported Contentful content model.

prefix (string): Prefix to namespace or label the saved field definitions.

Returns:

Promise<void>: Resolves when content types are successfully processed and saved.

Behavior:

1. Checks if the folder at contentfulFolderPath exists. If not, it creates it.

2. Reads the input file and extracts contentTypes and editorInterfaces.

3. If contentTypes exist, it delegates processing to saveContentType(). Otherwise, it logs

mailto:tso-migration@contentstack.com

“No content-type found”.

Throws:

Logs and throws an error if reading the file or saving data fails.

Function: saveContentType(contentTypes, editorInterface, prefix)

Description:

Processes each content type and its fields by matching them with their respective editor

controls and saves the data to JSON files.

Parameters:

contentTypes (Array<Object>): Array of content type definitions.

editorInterface (Array<Object>): Array of editor configurations for fields.

prefix (string): Used to label field data.

Returns:

void: This function writes files and does not return anything.

Behavior:

1. Converts the sys.id of each content type into snake_case.

2. Finds the matching editor interface by comparing content type IDs.

3. Merges field definitions with their widget/editor info.

4. Saves each content type as a prettified .json file in the target folder.

Output File

Each content type gets its own .json file named after its cleaned-up title (special

characters removed, first letter capitalized).

Output Format (per field):

Each saved JSON array contains objects with the following keys:

prefix

contentUid

contentDescription

contentfulID

id, name, type, localized, required, validations, disabled, omitted (from field definition)

widgetId (from editor interface)

contentNames (list of all content type IDs)

createInitialMapper Function

Overview

The createInitialMapper function reads content model data exported from Contentful,

transforms each model into a Contentstack-compatible schema format, and returns a

complete mapping of content types.

It is typically used during CMS migrations or synchronization processes between

Contentful and Contentstack.

Function Signature

JavaScript

const createInitialMapper = async () => { … }

Inputs

None were directly passed.

Reads files from:

JavaScript

path.resolve(process.cwd(), `${config.data}/${config.contentful.contentful}`)

where each file contains field definitions for a Contentful content type.

Output

An object in the following structure:

JavaScript

contentTypes: […] // array of content type mapping objects

Each contentType object contains:

Field Type Description

status

number

Indicates active state (1 = active)

isUpdated

boolean

Whether the mapping was updated

updateAt

string

Timestamp (left blank initially)

otherCmsTitle

string

Content type title from Contentful

otherCmsUid

string

UID from Contentful (contentfulID)

contentstackTitle

string

Transformed title for Contentstack (Capitalized)

contentstackUid

string

UID for Contentstack, corrected with

uidCorrector()

type

string

Always ‘content_type’

fieldMapping array

An array of field definitions, including system

fields

Internal Logic

Read Files

JavaScript

const files = await fs.readdir(…);

Gets all JSON files representing Contentful content types.

Iterate Files

JavaScript

for (const file of files) { … }

For each file:

Reads field definitions

Derives content type title from filename

Build Schema Object

Each object includes:

Metadata about the content type

Default fields (title and url) added manually

Custom fields generated via contentTypeMapper()

Generate Fields

JavaScript

const contentstackFields = […uidTitle, …contentTypeMapper(data)].filter(Boolean);

uidTitle: Hardcoded default fields for title and url

contentTypeMapper(data): Dynamically maps Contentful fields to Contentstack

schema

Delete Temporary Folder

deleteFolderSync(path.resolve(…));

Removes the data folder after processing to avoid re-use or conflicts.

Return Result

Returns the final list of mapped content types for further use.

Error Handling

Any error during file reading, transformation, or folder deletion is caught and logged: js

CopyEdit

console.error(‘Error saving content type:’, error);

Example Return

JavaScript

“contentTypes”: [

“status”: 1,

“isUpdated”: false,

“updateAt”: “”,

“otherCmsTitle”: “blogPost”,

“otherCmsUid”: “blogPostID”,

“contentstackTitle”: “BlogPost”, “contentstackUid”: “blog_post”, “type”: “content_type”,

“fieldMapping”: [

“uid”: “title”,

“contentstackFieldType”: “text”, …

},

…

Related Functions

contentTypeMapper: Converts each Contentful field to Contentstack schema.

uidCorrector: Normalizes field UIDs.

extractAdvancedFields: Injects metadata (e.g., mandatory, unique).

deleteFolderSync: Cleans up local temporary directories.

contentTypeMapper Function

Overview

The contentTypeMapper function is a comprehensive mapping utility that transforms a

content model structure (typically from a CMS like Contentful) into a schema array

suitable for another CMS (like Contentstack). Here’s a breakdown of how it works and

what each section does — suitable for use in developer documentation:

Function Purpose

The contentTypeMapper function takes an array of content field definitions (data) and

returns a normalized array of schema objects formatted for Contentstack. It supports

various field types, widget configurations, and advanced metadata.

Function Signature

JavaScript

const contentTypeMapper = (data) => { … };

Input: data – An array of field definition objects, typically exported from a CMS source.

Output: schemaArray – An array of transformed field objects structured for

Contentstack.

Core Logic (How it Works)

Iterate Through Input Data

data.reduce((acc, item) => { … }, []);

Each field (item) in the data array is processed based on its type and widgetId.

If you have any questions, please reach out to tso-migration@contentstack.com.

Handle Different Field Types

Rich Text

Calls arrangeRte to resolve references.

Uses createFieldObject with json type.

Symbol, Text

Handles widgets like singleLine, urlEditor, slugEditor, multipleLine, markdown,

dropdown, radio, tagEditor, and listInput.

Number, Integer

Maps editors to number, or re-maps to dropdownNumber, radioNumber, etc.

Date

Mapped directly to isodate.

Array, Link

Assets (Images, Files): Mapped to file, with .multiple = true if it’s an array.

Entries (References):

Parses linkContentType from validations.

Derives references (referenceFields) using helper logic.

Uses createFieldObject with reference type.

Checkbox, Tag Editor, List Input: Mapped appropriately.

Boolean

Mapped to boolean.

Object

If widgetId is an objectEditor, marked as app type.

Otherwise, enriches the name using app metadata from appDetails.

Location

Creates a group field plus subfields for lat and lon.

Helper Function: createFieldObject

This standardizes the schema field output:

mailto:tso-migration@contentstack.com

JavaScript

{

uid,

otherCmsField

otherCmsType,

contentstackField,

contentstackFieldUid,

contentstackFieldType,

backupFieldType,

backupFieldUid,

advanced

Where advanced comes from extractAdvancedFields, providing details like:

mandatory

unique

nonLocalizable

referenceFields (when applicable)

Special Logic

uidCorrector() is used to standardize IDs for compatibility.

Conditional checks on item.items, validations, and widgetId ensure the mapper

handles deeply nested or loosely structured fields gracefully.

References are deduplicated and capped for performance (slice(0, 9) or length < 25).

Console Logging

For widgets like tagEditor or listInput, a console.info() is called — likely for debugging

purposes.

Summary

This function is critical in migrating or transforming content model definitions from one

CMS to another. It ensures:

Widget-specific logic is respected

Reference relationships are preserved

Fields are enriched with necessary metadata

Complex widgets like Location, Object, and Reference are handled correctly

extractLocale Function

Description

This function extracts unique locale codes (e.g., en-us, fr-fr) from a Contentful JSON

export and returns them in an array. These locale codes are later pushed to the

database via a backend API to support localization in a new CMS like Contentstack.

Dependencies

jsonFilePath: Path to the exported JSON file from Contentful.

fs (Node.js built-in): Used to read the file contents.

Function: extractLocale

Purpose

Extracts and returns a list of unique locale codes used in the legacy CMS. Parameters

jsonFilePath (string) – File path to the exported Contentful data (JSON format).

Returns

Array<string> – A list of unique locale codes.

Example:

JavaScript

[‘en-us’, ‘fr-fr’]

Returns an empty array [] if:

No locales are found.

The file is missing or invalid.

Behavior

Validates the file path and JSON structure.

Parses the JSON and extracts values from the locales array.

Collects unique locale codes (locale.code).

Handles and logs errors gracefully.

Example Usage

JavaScript

const extractLocale = require(‘./libs/extractLocale’);

(async () => {

const locales = await extractLocale(‘./legacy-export.json’); console.log(‘Locales

found:’, locales);

})();

Validator Contentful

Overview

The Contentful Validator verifies that a JSON content model exported from Contentful

contains all required properties as defined in a configuration schema (contentful.json). It

is used as a pre-validation step before transforming or migrating content models into

another CMS like Contentstack.

Function: contentfulValidator(data: string)

Description:

Validates a raw JSON string exported from Contentful against a required schema

definition provided in contentful.json.

Parameters: data (string): Raw JSON content model as a string (from Contentful)

Returns:

true if:

All required properties listed in the config are present in the parsed JSON object.

false if:

Any required property is missing.

The JSON is malformed or cannot be parsed.

Internal Logic

1. Parse the JSON input

JavaScript

jsonData = JSON.parse(data);

1. Attempts to parse the input string into a valid JavaScript object.

2. If parsing fails, the function returns false.

2. Iterate Over Config Schema

JavaScript

Object.values(jsonConfig).every((prop: any) => { … });

1. Loops through each field defined in the contentful.json schema.

3. Validate Each Property

JavaScript

if (jsonData?.hasOwnProperty(prop?.name)) {

return true;

}

else if (prop?.required === ‘true’) {

return false;

}

return true;

1. Checks if the required properties exist in the parsed jsonData.

2. If a required property is missing, the function short-circuits and returns false.

4. Error Handling

JavaScript

try { … } catch (error) {

return false;

1. The function handles all parsing or runtime errors.

2. If parsing fails or unexpected data structures are encountered, false is returned

without throwing.

Example Usage

JavaScript

import contentfulValidator from ‘./validators/contentful-validator’;

import fs from ‘fs’;

const rawData = fs.readFileSync(‘contentful-export.json’, ‘utf-8’);

if (contentfulValidator(rawData)) {

console.log(‘� Contentful schema is valid!’);

} else {

console.error(‘� Invalid schema: Missing required fields or bad JSON.’);

Running the upload-api Project on Any Operating System

The following instructions will guide you in running the upload-api folder on any

operating system, including Windows and macOS.

If you have any questions, please reach out to tso-migration@contentstack.com.

Starting the upload-api Project

There are two methods to start the upload-api project: Method 1:

Run the following command from the root directory of your project:

Shell

npm run upload

This command will directly start the upload-api package.

Method 2:

Navigate to the upload-api directory manually and run the development server:

Shell

cd upload-api

npm run start

This approach starts the upload-api from within its own directory.

Restarting After Termination

If the project terminates unexpectedly, you can restart it by following the same steps

outlined above. Choose either Method 1 or Method 2 to relaunch the service.

mailto:tso-migration@contentstack.com

Limitations

1. Not handle the use case of deletion of existing destination stack in runtime

2. Content mapper module | existing stack | existing content type mapped | Modular

blocks, taxonomy these fields can be matched with Single Line Textbox field

3. Content Type Migration Limitations in Test Stacks

When migrating content types in a test stack, the handling of attached references

depends on your organization’s reference limit:

Organizations with a reference limit of 50: Full data migration is supported if a

content type has more than 10 references.

Organizations with a reference limit of 10: If a content type has more than 10

references, only the ‘title’ and ‘URL’ fields will be migrated.

4. Issue: Data migration may encounter unforeseen problems if the Contentful data

contains duplicate UIDs.

If you have any questions, please reach out to tso-migration@contentstack.com.

FAQ

What is the purpose of the migration-contentful package?

The package simplifies data migration from Contentful to Contentstack CMS by

providing utility functions for content extraction, field mapping, and locale handling.

How do I install the migration-contentful package?

You can reference the package in your package.json file to use it locally without

fetching from an external registry.

What functions are available in the migration-contentful package?

Key functions include extractContentTypes, createInitialMapper, and extractLocale

for content type extraction, mapping, and locale handling.

mailto:tso-migration@contentstack.com

Documents / Resources

CONTENTSTACK CMS Connector API Contentful [pdf] Owner's Manual

CMS Connector API Contentful, Connector API Contentful, API Contentful

, Contentful

References

User Manual

Contentstack

API Contentful, CMS Connector API Contentful, Connector API Contentful, Contentful,

Contentstack

Leave a comment
Your email address will not be published. Required fields are marked *

Comment *

Name

Email

Website

 Save my name, email, and website in this browser for the next time I comment.

https://manuals.plus/m/5302039c6feda067453a68a563c1e326d7814e1c7079d33786559885464b0fed
https://manuals.plus/m/5302039c6feda067453a68a563c1e326d7814e1c7079d33786559885464b0fed
https://manuals.plus/m/5302039c6feda067453a68a563c1e326d7814e1c7079d33786559885464b0fed
https://manual.tools/?p=18199157#MTQ4LjExMy4yMTAuMjUwOzY2LjI0OS42OC4zOSwgMTcyLjcxLjE1MC4xNDIsIDU0LjIxMi43MS4yMjc7NTQuMjEyLjcxLjIyNzs2Ni4yNDkuNjguMzk7
https://manuals.plus/category/contentstack
https://manuals.plus/tag/api-contentful
https://manuals.plus/tag/cms-connector-api-contentful
https://manuals.plus/tag/connector-api-contentful
https://manuals.plus/tag/contentful
https://manuals.plus/tag/contentstack

Search:

e.g. whirlpool wrf535swhz Search

Manuals+ | Upload | Deep Search | Privacy Policy | @manuals.plus | YouTube

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos

are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of

these marks on this website does not imply any affiliation with or endorsement.

Post Comment

https://manuals.plus/
https://manuals.plus/upload
https://manuals.plus/deep-search
https://manuals.plus/privacy-policy
https://x.com/manualsplus
https://www.youtube.com/@manualsplus

	CONTENTSTACK CMS Connector API Contentful
	Overview
	Installation
	Key Functions
	How to Use
	Description
	Output File
	Internal Logic
	Error Handling
	Validator Contentful
	FAQ
	Documents / Resources
	References

	Leave a comment

