& Manuals+

Home » Contentstack » CONTENTSTACK CMS Connector APl Contentful Owner’s Manual =

Contents [hide]

1 CONTENTSTACK CMS Connector API Contentful
2 Overview

3 Installation

4 Key Functions

5 How to Use

6 Description

7 Output File

8 Internal Logic

9 Error Handling

10 Validator Contentful

11 FAQ

12 Documents / Resources

12.1 References

CONTENTSTACK

CONTENTSTACK CMS Connector API Contentful

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/contentstack
https://manuals.plus/contentstack/cms-connector-api-contentful-manual.pdf

CMS Connector API - Contentful

Thils document outines the funclionalities and usage of the :lli'._;' ation-contentful
package, which Is designed to simpiify the process of migrating data from Contentful to
Contentsiack CMS. 1t provides key utility functions for extracting content types, mapping fiefds,
and .'13‘IU||"Ig locales, E-‘15|.Ifl"|g a smooth and efMclent ml;.'aﬂ:ﬂ process. The I'OII:?I'-I'IE sections
detall the Instaliation, avakable funclions, and their specific behaviors.
migration-contentful Package

Owverview

The nigration-contentful package s usad to simpify the procass of migrating data from
Contentiul to Contsnistack CMS. It helps with extracting contsnt types, mapping fiakes, and
nhanding locales. This package contains key utliity fUnchons to faciitats these tasks.

Installation

In your package _ jsan, you referenge this package from your lacal fle sysiem like this:

JavaScrpt

dopendenciss®s {

“migration-contentful®: “f1leswigration-contantful

This makes the migration-content ful package avalable locally without the need fo fetch It
from an extemal ragistry ke npm.

Key Functions
You can Impaost the foifowing funchions from the package fo use In your project:

1. extractContentTypes:

o This function extracts conient types from the exporied Contentful data and saves
them lacally.

= It processes e data to create @ structured format that can be used Tor migration
1o another CMS.
const * extractContentTypes } = require('-'.:r.l' inn-content ful)

Specifications

e Product: CMS Connector API — Contentful
o Description: The migration-contentful package simplifies the process of migrating
data from Contentful to Contentstack CMS by providing utility functions for extracting

content types, mapping fields, and handling locales.

CMS Connector API — Contentful

This document outlines the functionalities and usage of the migration-contentful
package, which is designed to simplify the process of migrating data from Contentful to
Contentstack CMS. It provides key ultility functions for extracting content types, mapping
fields, and handling locales, ensuring a smooth and efficient migration process. The
following sections detail the installation, available functions, and their specific behaviors.

migration-contentful Package

Overview

The migration-contentful package is used to simplify the process of migrating data from
Contentful to Contentstack CMS. It helps with extracting content types, mapping fields,

and handling locales. This package contains key utility functions to facilitate these tasks.

Installation

In your package.json, you reference this package from your local file system like this:

e JavaScript
« “dependencies”: {

« “migration-contentful”: “file:migration-contentful”

o}

This makes the migration-contentful package available locally without the need to fetch it

from an external registry like npm.
Key Functions

You can import the following functions from the package to use in your project:

1. extractContentTypes:

e This function extracts content types from the exported Contentful data and saves
them locally.

o It processes the data to create a structured format that can be used for migration
to another CMS. const { extractContentTypes } = require(‘migration-contentful’);

2. createlnitialMapper:

o Once the content types are extracted, this function transforms them into a
mapping schema. This schema helps in migrating the data by ensuring fields are
mapped correctly between systems. const { createlnitialMapper } =
require(‘migration-contentful’);

3. extractLocale:

« This function extracts locale information (languages and region data) from

Contentful exports. This is crucial for migrating content with language variations to

the new CMS. const { extractLocale } = require(‘migration-contentful’);
How to Use

To use the functions in your code, simply import them like this:

e JavaScript
o const { extractContentTypes, createlnitialMapper, extractLocale } = require(‘migration-

contentful’);

These functions will allow you to:

o Extract content types from a Contentful export.
o Create a field mapping based on the extracted data.

o Extract and manage locales for migrating language data
extractContentTypes Function

Overview
This module provides utilities to extract and save Contentful content type definitions
along with their associated editor interfaces. The data is processed and saved as

structured JSON files for use in CMS migration or synchronization pipelines.

Function: extractContentTypes(filePath, prefix)

Description

« If you have any questions, please reach out to tso-migration@contentstack.com.
e Reads a file containing Contentful content types and editor interfaces, processes

them, and saves each content type in a structured format.
Parameters:

« filePath (string): Path to the file containing the exported Contentful content model.

o prefix (string): Prefix to namespace or label the saved field definitions.

Returns:

Promise<void>: Resolves when content types are successfully processed and saved.
Behavior:

1. Checks if the folder at contentfulFolderPath exists. If not, it creates it.
2. Reads the input file and extracts contentTypes and editorinterfaces.

3. If contentTypes exist, it delegates processing to saveContentType(). Otherwise, it logs

mailto:tso-migration@contentstack.com

“No content-type found”.

Throws:

Logs and throws an error if reading the file or saving data fails.
Function: saveContentType(contentTypes, editorinterface, prefix)

Description:
Processes each content type and its fields by matching them with their respective editor

controls and saves the data to JSON files.
Parameters:

o contentTypes (Array<Object>): Array of content type definitions.
o editorinterface (Array<Object>): Array of editor configurations for fields.

o prefix (string): Used to label field data.

Returns:

void: This function writes files and does not return anything.
Behavior:

1. Converts the sys.id of each content type into snake_case.
2. Finds the matching editor interface by comparing content type IDs.
3. Merges field definitions with their widget/editor info.

4. Saves each content type as a prettified .json file in the target folder.
Output File

Each content type gets its own .json file named after its cleaned-up title (special

characters removed, first letter capitalized).

Output Format (per field):

Each saved JSON array contains objects with the following keys:

o prefix

 contentUid

« contentDescription

o contentfullD

e id, name, type, localized, required, validations, disabled, omitted (from field definition)
e widgetld (from editor interface)

« contentNames (list of all content type IDs)

createlnitialMapper Function

Overview

e The createlnitialMapper function reads content model data exported from Contentful,
transforms each model into a Contentstack-compatible schema format, and returns a
complete mapping of content types.

e lItis typically used during CMS migrations or synchronization processes between

Contentful and Contentstack.

Function Signature

o JavaScript

e const createlnitialMapper = async () =>{ ... }

Inputs
None were directly passed.

Reads files from:

e JavaScript
« path.resolve(process.cwd(), "${config.data}/${config.contentful.contentful}’)

« where each file contains field definitions for a Contentful content type.

Output

An object in the following structure:

o JavaScript

e contentTypes: [...]// array of content type mapping objects

Each contentType object contains:

Field Type Description

status number Indicates active state (1 = active)

isUpdated boolean Whether the mapping was updated

updateAt string Timestamp (left blank initially)

otherCmsTitle string Content type title from Contentful

otherCmsUid string UID from Contentful (contentfullD)
contentstackTitle string Transformed title for Contentstack (Capitalized)
contentstackUid string UID for Contentstack, corrected with

uidCorrector()

type

string

Always ‘content_type’

fieldMapping

array

An array of field definitions, including system

fields

Internal Logic

Read Files

o JavaScript

e const files = await fs.readdir(...);

Gets all JSON files representing Contentful content types.

Iterate Files

e JavaScript

o for (const file of files) { ... }

For each file:

¢ Reads field definitions

o Derives content type title from filename

Build Schema Object

Each object includes:

o Metadata about the content type

o Default fields (title and url) added manually

o Custom fields generated via contentTypeMapper()

Generate Fields

JavaScript

const contentstackFields = [...uidTitle, ...contentTypeMapper(data)].filter(Boolean);

uidTitle: Hardcoded default fields for title and url

contentTypeMapper(data): Dynamically maps Contentful fields to Contentstack

schema
Delete Temporary Folder

o deleteFolderSync(path.resolve(...));

o Removes the data folder after processing to avoid re-use or conflicts.

Return Result

Returns the final list of mapped content types for further use.
Error Handling

Any error during file reading, transformation, or folder deletion is caught and logged: js

CopyEdit

console.error(‘Error saving content type?’, error);
Example Return

JavaScript

“contentTypes”: [

“status”: 1,

e “isUpdated”: false,

o “UpdateAt”:

o “otherCmsTitle”: “blogPost”,

e “otherCmsUid”: “blogPostID”,

o “contentstackTitle”: “BlogPost”, “contentstackUid”: “blog_post”, “type”: “content_type”,
o “fieldMapping”: [

“uid”: “title”,

“contentstackFieldType”: “text”, ...

Related Functions

contentTypeMapper: Converts each Contentful field to Contentstack schema.

uidCorrector: Normalizes field UIDs.

extractAdvancedFields: Injects metadata (e.g., mandatory, unique).

deleteFolderSync: Cleans up local temporary directories.

contentTypeMapper Function

Overview

The contentTypeMapper function is a comprehensive mapping utility that transforms a
content model structure (typically from a CMS like Contentful) into a schema array
suitable for another CMS (like Contentstack). Here’s a breakdown of how it works and

what each section does — suitable for use in developer documentation:

Function Purpose
The contentTypeMapper function takes an array of content field definitions (data) and
returns a normalized array of schema objects formatted for Contentstack. It supports

various field types, widget configurations, and advanced metadata.

Function Signature

o JavaScript

e const contentTypeMapper = (data) =>{ ... };

o Input: data — An array of field definition objects, typically exported from a CMS source.
o Output: schemaArray — An array of transformed field objects structured for

Contentstack.

Core Logic (How it Works)

Iterate Through Input Data

e data.reduce((acc, item) =>{ ... }, []);
o Each field (item) in the data array is processed based on its type and widgetld.

« If you have any questions, please reach out to tso-migration@contentstack.com.

Handle Different Field Types

Rich Text

o Calls arrangeRte to resolve references.

o Uses createFieldObject with json type.

Symbol, Text

o Handles widgets like singleLine, urlEditor, slugEditor, multipleLine, markdown,

dropdown, radio, tagEditor, and listInput.

Number, Integer
o Maps editors to number, or re-maps to dropdownNumber, radioNumber, etc.
Date

o Mapped directly to isodate.

Array, Link
o Assets (Images, Files): Mapped to file, with .multiple = true if it's an array.

Entries (References):

o

Parses linkContentType from validations.

o

Derives references (referenceFields) using helper logic.

o

Uses createFieldObject with reference type.

o

Checkbox, Tag Editor, List Input: Mapped appropriately.

o

o Boolean

o Mapped to boolean.
o Object

o If widgetld is an objectEditor, marked as app type.

o Otherwise, enriches the name using app metadata from appDetails.
o Location

Creates a group field plus subfields for lat and lon.

Helper Function: createFieldObject

This standardizes the schema field output:

mailto:tso-migration@contentstack.com

e JavaScript

o {

e uid,

e otherCmsField

e otherCmsType,
 contentstackField,

o contentstackFieldUid,
o contentstackFieldType,
e backupFieldType,

o backupFieldUid,

e advanced

Where advanced comes from extractAdvancedFields, providing details like:

mandatory

unique

nonlLocalizable

referenceFields (when applicable)

Special Logic

e uidCorrector() is used to standardize IDs for compatibility.
« Conditional checks on item.items, validations, and widgetld ensure the mapper
handles deeply nested or loosely structured fields gracefully.

o References are deduplicated and capped for performance (slice(0, 9) or length < 25).

Console Logging
For widgets like tagEditor or listinput, a console.info() is called — likely for debugging

purposes.

Summary
This function is critical in migrating or transforming content model definitions from one

CMS to another. It ensures:

o Widget-specific logic is respected

o Reference relationships are preserved
e Fields are enriched with necessary metadata

o Complex widgets like Location, Object, and Reference are handled correctly

extractLocale Function

Description
This function extracts unique locale codes (e.g., en-us, fr-fr) from a Contentful JSON
export and returns them in an array. These locale codes are later pushed to the

database via a backend API to support localization in a new CMS like Contentstack.

Dependencies

o jsonFilePath: Path to the exported JSON file from Contentful.

o fs (Node.js built-in): Used to read the file contents.

Function: extractLocale

Purpose

e Extracts and returns a list of unique locale codes used in the legacy CMS. Parameters

« jsonFilePath (string) — File path to the exported Contentful data (JSON format).

Returns

Array<string> — A list of unique locale codes.

Example:

o JavaScript

e [‘en-us’, ‘fr-fr']

e Returns an empty array [] if:
o No locales are found.

o The file is missing or invalid.

Behavior

Validates the file path and JSON structure.

Parses the JSON and extracts values from the locales array.

Collects unique locale codes (locale.code).

Handles and logs errors gracefully.

Example Usage

e JavaScript

e const extractLocale = require(‘./libs/extractLocale’);

* (async () => {

o const locales = await extractLocale(‘./legacy-export.json’); console.log(‘Locales

found:’, locales);

* D0;

Validator Contentful

Overview

The Contentful Validator verifies that a JSON content model exported from Contentful
contains all required properties as defined in a configuration schema (contentful.json). It
is used as a pre-validation step before transforming or migrating content models into
another CMS like Contentstack.

Function: contentfulValidator(data: string)

Description:
Validates a raw JSON string exported from Contentful against a required schema

definition provided in contentful.json.

Parameters: data (string): Raw JSON content model as a string (from Contentful)

Returns:

o true if:
All required properties listed in the config are present in the parsed JSON obiject.
o false if:

Any required property is missing.

e The JSON is malformed or cannot be parsed.

Internal Logic

—_—

. Parse the JSON input
o JavaScript
e jsonData = JSON.parse(data);
1. Attempts to parse the input string into a valid JavaScript object.
2. If parsing fails, the function returns false.
2. Iterate Over Config Schema
e JavaScript
o Object.values(jsonConfig).every((prop: any) =>{ ... });
1. Loops through each field defined in the contentful.json schema.
3. Validate Each Property
e JavaScript

if (jsonData?.hasOwnProperty(prop?.name)) {

return true;

.}

else if (prop?.required === ‘true’) {

return false;

.}

return true;

1. Checks if the required properties exist in the parsed jsonData.
2. If a required property is missing, the function short-circuits and returns false.
4. Error Handling
JavaScript
try { ... } catch (error) {
return false;
1. The function handles all parsing or runtime errors.
2. If parsing fails or unexpected data structures are encountered, false is returned

without throwing.

Example Usage

JavaScript

o import contentfulValidator from ‘./validators/contentful-validator’;
e import fs from ‘fs’;

e const rawData = fs.readFileSync(‘contentful-export.json’, ‘utf-8’);
« if (contentfulValidator(rawData)) {

e console.log(* Contentful schema is valid!’);

e }else{

e console.error(‘ Invalid schema: Missing required fields or bad JSON.);

Running the upload-api Project on Any Operating System

e The following instructions will guide you in running the upload-api folder on any

operating system, including Windows and macOS.
« If you have any questions, please reach out to tso-migration@contentstack.com.

Starting the upload-api Project

There are two methods to start the upload-api project: Method 1:

Run the following command from the root directory of your project:
Shell

npm run upload

This command will directly start the upload-api package.

Method 2:
Navigate to the upload-api directory manually and run the development server:

e Shell
e cd upload-api

e Npm run start

This approach starts the upload-api from within its own directory.

Restarting After Termination
If the project terminates unexpectedly, you can restart it by following the same steps

outlined above. Choose either Method 1 or Method 2 to relaunch the service.

mailto:tso-migration@contentstack.com

Limitations

1. Not handle the use case of deletion of existing destination stack in runtime
2. Content mapper module | existing stack | existing content type mapped | Modular
blocks, taxonomy these fields can be matched with Single Line Textbox field
3. Content Type Migration Limitations in Test Stacks
When migrating content types in a test stack, the handling of attached references
depends on your organization’s reference limit:
» Organizations with a reference limit of 50: Full data migration is supported if a
content type has more than 10 references.
o Organizations with a reference limit of 10: If a content type has more than 10
references, only the ‘title’ and ‘URL fields will be migrated.
4. Issue: Data migration may encounter unforeseen problems if the Contentful data

contains duplicate UIDs.

If you have any questions, please reach out to tso-migration@contentstack.com.

FAQ

What is the purpose of the migration-contentful package?

The package simplifies data migration from Contentful to Contentstack CMS by

providing utility functions for content extraction, field mapping, and locale handling.

How do | install the migration-contentful package?

You can reference the package in your package.json file to use it locally without

fetching from an external registry.

What functions are available in the migration-contentful package?

Key functions include extractContentTypes, createlnitialMapper, and extractLocale

for content type extraction, mapping, and locale handling.

mailto:tso-migration@contentstack.com

Documents / Resources

CONTENTSTACK CMS Connector API Contentful [pdf] Owner's Manual
CMS Connector API Contentful, Connector APl Contentful, APl Contentful

, Contentful

References

e User Manual

® API Contentful, CMS Connector API Contentful, Connector APl Contentful, Contentful,

m Contentstack Contentstack

Leave a comment

Your email address will not be published. Required fields are marked *

Comment *

Name

Email

Website

[T Save my name, email, and website in this browser for the next time | comment.

https://manuals.plus/m/5302039c6feda067453a68a563c1e326d7814e1c7079d33786559885464b0fed
https://manuals.plus/m/5302039c6feda067453a68a563c1e326d7814e1c7079d33786559885464b0fed
https://manuals.plus/m/5302039c6feda067453a68a563c1e326d7814e1c7079d33786559885464b0fed
https://manual.tools/?p=18199157#MTQ4LjExMy4yMTAuMjUwOzY2LjI0OS42OC4zOSwgMTcyLjcxLjE1MC4xNDIsIDU0LjIxMi43MS4yMjc7NTQuMjEyLjcxLjIyNzs2Ni4yNDkuNjguMzk7
https://manuals.plus/category/contentstack
https://manuals.plus/tag/api-contentful
https://manuals.plus/tag/cms-connector-api-contentful
https://manuals.plus/tag/connector-api-contentful
https://manuals.plus/tag/contentful
https://manuals.plus/tag/contentstack

Post Comment

Search:

e.g. whirlpool wrf535swhz

Manuals+ | Upload | Deep Search | Privacy Policy | @manuals.plus | YouTube

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos
are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of

these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/
https://manuals.plus/upload
https://manuals.plus/deep-search
https://manuals.plus/privacy-policy
https://x.com/manualsplus
https://www.youtube.com/@manualsplus

	CONTENTSTACK CMS Connector API Contentful
	Overview
	Installation
	Key Functions
	How to Use
	Description
	Output File
	Internal Logic
	Error Handling
	Validator Contentful
	FAQ
	Documents / Resources
	References

	Leave a comment

