
Home » CNCU » CNCU PCA9685 Servo Driver i2C Interface Instructions

Contents
1 CNCU PCA9685 Servo Driver i2C
Interface
2 Product Usage Instructions
3 Overview
4 Pinouts
5 Assembly
6 Hooking it Up
7 Chaining Drivers
8 Using the Adafruit Library
9 Description
10 Controlling Servos
11 Standard Servos
12 Continuous Rotation Servos
13 Full Example Code
14 Downloads
15 FAQ
16 Documents / Resources

16.1 References

CNCU PCA9685 Servo Driver i2C Interface

CNCU PCA9685 Servo Driver i2C Interface Instructions

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/cncu
https://manuals.plus/cncu/pca9685-servo-driver-i2c-interface-manual.pdf
https://manuals.plus/#cncu_pca9685_servo_driver_i2c_interface
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#overview
https://manuals.plus/#pinouts
https://manuals.plus/#assembly
https://manuals.plus/#hooking_it_up
https://manuals.plus/#chaining_drivers
https://manuals.plus/#using_the_adafruit_library
https://manuals.plus/#description
https://manuals.plus/#controlling_servos
https://manuals.plus/#standard_servos
https://manuals.plus/#continuous_rotation_servos
https://manuals.plus/#full_example_code
https://manuals.plus/#downloads
https://manuals.plus/#faq
https://manuals.plus/#documents_resources
https://manuals.plus/#references

Product Usage Instructions

When you see ERR 40 on the machine:

Keep the machine turned on, this is very important.

Remove the batteries from the Live Position.

Place the batteries from the Reserved position into the Live Position.

Reboot the machine.

Remember to purchase two new batteries to keep in Reserve for the next battery change.

Contact AM.CO.ZA Support if you encounter difficulties changing the battery or if the machine position shifts
during the process. You can also reach out via WhatsApp at 060 600 6000 for assistance.

Overview

Driving servo motors with the Arduino Servo library is pretty easy, but each one consumes a precious pin – not to
mention some Arduino processing power. The Adafruit 16-Channel 12-bit PWM/Servo Driver will drive up to 16
servos over I2C with only 2 pins. The on-board PWM controller will drive all 16 channels simultaneously with no
additional Arduino processing overhead. What’s more, you can chain up to 62 of them to control up to 992 servos
– all with the same 2 pins!
The Adafruit PWM/Servo Driver is the perfect solution for any project that requires a lot of servos.

Pinouts

There are two sets of control input pins on either side. Both sides of the pins are identical! Use whichever side

you like, you can also easily chain by connecting up two side-by-side

Power Pins

GND – This is the power and signal ground pin, must be connected

VCC – This is the logic power pin, connect this to the logic level you want to use for the PCA9685 output,

should be 3 – 5V max! It’s also used for the 10K pullups on SCL/SDA so unless you have your own pullups,

have it match the microcontroller’s logic level too!

V+ – This is an optional power pin that will supply distributed power to the servos. If you are not using for

servos you can leave disconnected. It is not used at all by the chip. You can also inject power from the 2-pin

terminal block at the top of the board. You should provide 5-6VDC if you are using servos. If you have to, you

can go higher to 12VDC, but if you mess up and connect VCC to V+ you could damage your board!

Control Pins

SCL – I2C clock pin, connect to your microcontroller I2C clock line. Can use 3V or 5V logic, and has a weak

pullup to VCC

SDA – I2C data pin, connect to your microcontroller I2C data line. Can use 3V or 5V logic, and has a weak

pullup to VCC

OE – Output enable. Can be used to quickly disable all outputs. When this pin is low all pins are enabled. When

the pin is high the outputs are disabled. Pulled low by default so it’s an optional pin!

Output Ports

There are 16 output ports. Each port has 3 pins: V+, GND and the PWM output. Each PWM runs completely

independently but they must all have the same PWM frequency.

That is, for LEDs you probably want 1.0 KHz but servos need 60 Hz – so you cannot use half for LEDs @ 1.0

KHz and half @ 60 Hz.

They’re set up for servos but you can use them for LEDs! Max current per pin is 25mA.

There are 220 ohm resistors in series with all PWM Pins and the output logic is the same as VCC so keep that

in mind if using LEDs.

Assembly

Install the Servo Headers

Install 4 3×4 pin male headers into the marked positions along the edge of the board.

Solder all pins

There are a lot of them!

Add Headers for Control

A strip of male header is included. Where you want to install headers and on what side depends a little on use:

For breadboard (http://adafru.it/239) use, install headers on the bottom of the board.

For use with jumper wires (http://adafru.it/758), install the headers on top of the board.

For use with our 6-pin cable (http://adafru.it/206), install the headers on top of the board.

If you are chaining multiple driver boards, you will want headers on both ends.

http://www.adafruit.com/products/239
http://adafru.it/239
http://www.adafruit.com/products/758
http://adafru.it/758
http://www.adafruit.com/products/206
http://adafru.it/206

Install Power Terminals

If you are chaining multiple driver boards, you only need a power terminal on the first one.

Hooking it Up

Connecting to the Arduino

The PWM/Servo Driver uses I2C so it take only 4 wires to connect to your Arduino:

“Classic” Arduino wiring:

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)

GND -> GND

Analog 4 -> SDA

Analog 5 -> SCL

Older Mega wiring:

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)

GND -> GND

Digital 20 -> SDA

Digital 21 -> SCL

R3 and later Arduino wiring (Uno, Mega & Leonardo):
(These boards have dedicated SDA & SCL pins on the header nearest the USB connector)

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)

GND -> GND

SDA -> SDA

SCL -> SCL

The VCC pin is just power for the chip itself. If you want to connect servos or LEDs that use the V+ pins, you
MUST connect the V+ pin as well. The V+ pin can be as high as 6V even if VCC is 3.3V (the chip is 5V safe). We
suggest connecting power through the blue terminal block since it is polarity-protected.

Power for the Servos
Most servos are designed to run on about 5 or 6v. Keep in mind that a lot of servos moving at the same time
(particularly large powerful ones) will need a lot of current. Even micro servos will draw several hundred mA when
moving. Some High-torque servos will draw more than 1A each under load.
Good power choices are:

5v 2A switching power supply (http://adafru.it/276)

5v 10A switching power supply (http://adafru.it/658)

4xAA Battery Holder (http://adafru.it/830) – 6v with Alkaline cells. 4.8v with NiMH rechargeable cells.

4.8 or 6v Rechargeable RC battery packs from a hobby store.

It is not a good idea to use the Arduino 5v pin to power your servos. Electrical noise and ‘brownouts’ from excess
current draw can cause your Arduino to act erratically, reset and/or overheat.

https://www.adafruit.com/products/276
http://adafru.it/276
https://www.adafruit.com/products/658
http://adafru.it/658
https://www.adafruit.com/products/830
http://adafru.it/830

Adding a Capacitor to the thru-hole capacitor slot
We have a spot on the PCB for soldering in an electrolytic capacitor. Based on your usage, you may or may not
need a capacitor. If you are driving a lot of servos from a power supply that dips a lot when the servos move, n *
100uF where n is the number of servos is a good place to start – eg 470uF or more for 5 servos. Since its so
dependent on servo current draw, the torque on each motor, and what power supply, there is no “one magic
capacitor value” we can suggest which is why we don’t include a capacitor in the kit.

Connecting a Servo
Most servos come with a standard 3-pin female connector that will plug directly into the headers on the Servo
Driver. Be sure to align the plug with the ground wire (usually black or brown) with the bottom row and the signal
wire (usually yellow or white) on the top.

Adding More Servos
Up to 16 servos can be attached to one board. If you need to control more than 16 servos, additional boards can
be chained as described on the next page.

Chaining Drivers

Multiple Drivers (up to 62) can be chained to control still more servos.

With headers at both ends of the board, the wiring is as simple as connecting a 6-pin parallel cable

(http://adafru.it/206) from one board to the next.

Addressing the Boards

Each board in the chain must be assigned a unique address. This is done with the address jumpers on the

upper right edge of the board. The I2C base address for each board is 0x40. The binary address that you

program with the address jumpers is added to the base I2C address.

To program the address offset, use a drop of solder to bridge the corresponding address jumper for each binary

‘1’ in the address.

https://www.adafruit.com/products/206
http://adafru.it/206

Board 0: Address = 0x40 Offset = binary 00000 (no jumpers required)

Board 1: Address = 0x41 Offset = binary 00001 (bridge A0 as in the photo above)

Board 2: Address = 0x42 Offset = binary 00010 (bridge A1)

Board 3: Address = 0x43 Offset = binary 00011 (bridge A0 & A1)

Board 4: Address = 0x44 Offset = binary 00100 (bridge A2)

etc.
In your sketch, you’ll need to declare a separate project for each board. Call begins on each object, and controls
each servo through the object it’s attached to. For example:

Using the Adafruit Library

Since the PWM Servo Driver is controlled over I2C, its super easy to use with any microcontroller or

microcomputer.

In this demo, we’ll show using it with the Arduino IDE but the C++ code can be ported easily

Install Adafruit PCA9685 library

To begin reading sensor data, you will need to install the Adafruit_PWMServo library (code on our github

repository) (https://adafru.it/aQl). It is available from the Arduino library manager so we recommend using

that.

https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://adafru.it/aQl

From the IDE open up the library manager…

And type in adafruit pwm to locate the library. Click Install

We also have a great tutorial on Arduino library installation at: http://learn.adafruit.com/adafruit-all-about-

arduino-libraries-install-use (https://adafru.it/aYM)

Test with the Example Code:

First make sure all copies of the Arduino IDE are closed.

Next open the Arduino IDE and select File->Examples->Adafruit_PWMServoDriver- >Servo. This will open the

example file in an IDE window.

If using a Breakout:

Connect the driver board and servo as shown on the previous page. Don’t forget to provide power to both Vin

(3-5V logic level) and V+ (5V servo power). Check the green LED is lit!

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
https://adafru.it/aYM

If using a Shield:

Plug the shield into your Arduino. Don’t forget you will also have to provide 5V to the V+ terminal block. Both

red and green LEDs must be lit.

If using a FeatherWing:

Plug the FeatherWing into your Feather. Don’t forget you will also have to provide 5V to the V+ terminal block.

Check the green LED is lit!

Connect a Servo

A single servo should be plugged into the PWM #0 port, the first port. You should see the servo sweep back

and forth over approximately 180 degrees.

Calibrating your Servos
Servo pulse timing varies between different brands and models. Since it is an analog control circuit, there is often
some variation between samples of the same brand and model. For precise position control, you will want to
calibrate the minumum and maximum pulse widths in your code to match the known positions of the servo.

Find the Minimum:

Using the example code, edit SERVOMIN until the low point of the sweep reaches the minimum range of travel.

It is best to approach this gradually and stop before the physical limit of travel is reached.

Find the Maximum:

Again using the example code, edit SERVOMAX until the high point of the sweep reaches the maximum range

of travel. Again, is best to approach this gradually and stop before the physical limit of travel is reached.

Use caution when adjusting SERVOMIN and SERVOMAX. Hitting the physical limits of travel can strip the gears
and permanently damage your servo.

Converting from Degrees to Pulse Length
The Arduino “map()” function (https://adafru.it/aQm) is an easy way to convert between degrees of rotation
and your calibrated SERVOMIN and SERVOMAX pulse lengths. Assuming a typical servo with 180 degrees of
rotation; once you have calibrated SERVOMIN to the 0-degree position and SERVOMAX to the 180-degree
position, you can convert any angle between 0 and 180 degrees to the corresponding pulse length with the
following line of code:

Library Reference setPWMFreq(freq)

Description

http://arduino.cc/en/Reference/Map
https://adafru.it/aQm

This function can be used to adjust the PWM frequency, which determines how many full ‘pulses’ per second

are generated by the IC. Stated differently, the frequency determines how ‘long’ each pulse is in duration from

start to finish, taking into account both the high and low segments of the pulse.

Frequency is important in PWM, since setting the frequency too high with a very small duty cycle can cause

problems, since the ‘rise time’ of the signal (the time it takes to go from 0V to VCC) may be longer than the time

the signal is active, and the PWM output will appear smoothed out and may not even reach VCC, potentially

causing a number of problems.

Arguments

freq: A number representing the frequency in Hz, between 40 and 1600

Example

The following code will set the PWM frequency to 1000Hz:

setPWM(channel, on, off)
Description
This function sets the start (on) and end (off) of the high segment of the PWM pulse on a specific channel. You
specify the ‘tick’ value between 0..4095 when the signal will turn on, and when it will turn off. Channel indicates
which of the 16 PWM outputs should be updated with the new values.

Arguments

channel: The channel that should be updated with the new values (0..15)

on: The tick (between 0..4095) when the signal should transition from low to high

off: the tick (between 0..4095) when the signal should transition from high to low

Example
The following example will cause channel 15 to start low, go high around 25% into the pulse (tick 1024 out of
4096), transition back to low 75% into the pulse (tick 3072), and remain low for the last 25% of the pulse:

Using as GPIO

There’s also some special settings for turning the pins fully on or fully off

Arduino Library Docs

Arduino Library Docs (https://adafru.it/Au7)

Python & CircuitPython

It’s easy to use the PCA9685 driver with Python or CircuitPython and the Adafruit CircuitPython PCA9685

(https://adafru.it/tZF) module. This module allows you to easily write Python code that control servos and

PWM with this breakout.

You can use this driver board with any CircuitPython microcontroller board or with a computer that has GPIO

and Python thanks to Adafruit_Blinka, our CircuitPython-for- Python compatibility library

(https://adafru.it/BSN).

CircuitPython Microcontroller Wiring
First wire up a PCA9685 to your board exactly as shown on the previous pages for Arduino. Here’s an example of
wiring a Feather M0 to the driver board with I2C:

Python Computer Wiring

Since there’s dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For other

platforms, please visit the guide for CircuitPython on Linux to see whether your platform is supported

(https://adafru.it/BSN).

Here’s the Raspberry Pi wired with I2C:

http://adafruit.github.io/Adafruit-PWM-Servo-Driver-Library/html/class_adafruit___p_w_m_servo_driver.html
https://adafru.it/Au7
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://adafru.it/tZF
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://adafru.it/BSN
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://adafru.it/BSN

Don’t try to power your servos from the RasPi or Linux board’s 5V power, you can easily cause a power supply
brown-out and mess up your Pi! Use a separate 5v 2A or 4A adapter

5V 2A (2000mA) switching power supply – UL Listed

This is an FCC/CE certified and UL-listed power supply. Need a lot of 5V power?

This switching supply gives a clean regulated 5V output at up to 2000mA. 110 or 240 input, so it works…

https://www.adafruit.com/product/276

5V 4A (4000mA) switching power supply – UL Listed

Need a lot of 5V power? This switching supply gives a clean regulated 5V output at up to 4 Amps (4000mA).

110 or 240 input, so it works in any country. The plugs are “US… https://www.adafruit.com/product/1466

CircuitPython Installation of PCA9685 and ServoKit Libraries

https://www.adafruit.com/product/276
https://www.adafruit.com/product/276
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466

You’ll need to install the Adafruit CircuitPython PCA9685 (https://adafru.it/tZF) library on your CircuitPython

board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you’ll need to install the necessary libraries to use the hardware–carefully follow the steps to find and

install these libraries from Adafruit’s CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython

starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you’ll need to manually install the necessary libraries
from the bundle:

adafruit_pca9685.mpy

adafruit_bus_device

adafruit_register

adafruit_motor

adafruit_servokit.mpy

Before continuing make sure your board’s lib folder or root filesystem has the adafruit_pca9685.mpy,
adafruit_register, and adafruit_servokit.mpy, adafruit_motor and adafruit_bus_device files and folders copied over.
Next connect to the board’s serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Python Installation of PCA9685 and ServoKit Libraries

You’ll need to install the Adafruit_Blinka library that provides CircuitPython support in Python. This may also
require enabling I2C on your platform and verifying you are running Python 3. Since each platform is a little
different, and Linux changes often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that’s done, from your command line run the following commands:

If your default Python is version 3 you may need to run ‘pip’ instead. Just make sure you aren’t trying to use

CircuitPython on Python 2.x, it isn’t supported!

CircuitPython & Python Usage

The following section will show how to control the PCA9685 from the board’s Python prompt / REPL. You’ll learn

how to interactively control servos and dim LEDs by typing in the code below.

Dimming LEDs
Run the following code to import the necessary modules and initialize the I2C connection with the driver board:

https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://adafru.it/tZF
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://adafru.it/Amd
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafru.it/uap
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://adafru.it/ABU
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://adafru.it/Awz
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://adafru.it/BSN

Each channel of the PCA9685 can be used to control the brightness of an LED. The PCA9685 generates a

high-speed PWM signal which turns the LED on and off very quickly. If the LED is turned on longer than turned

off it will appear brighter to your eyes.

First wire a LED to the board as follows. Note you don’t need to use a resistor to limit current through the LED

as the PCA9685 will limit the current to around 10mA:

LED cathode / shorter leg to PCA9685 channel GND / ground. LED anode / longer leg to PCA9685 channel PWM.

The PCA9685 class provides control of the PWM frequency and each channel’s duty cycle. Check out the

PCA9685 class documentation (https://adafru.it/C5n) for more details.

For dimming LEDs you typically don’t need to use a fast PWM signal frequency and can set the board’s PWM

frequency to 60hz by setting the frequency attribute:

The PCA9685 supports 16 separate channels that share a frequency but can have independent duty cycles.

That way you could dim 16 LEDs separately!

The PCA9685 object has a channels attribute which has an object for each channel that can control the duty

cycle. To get the individual channel use the [] to index into channels.

Now control the LED brightness by controlling the duty cycle of the channel connected to the LED. The duty

cycle value should be a 16-bit value, i.e. 0 to 0xffff, which represents what percent of the time the signal is on

vs. off. A value of 0xffff is 100% brightness, 0 is 0% brightness, and in-between values go from 0% to 100%

brightness.

For example set the LED completely on with a duty cycle of 0xffff:

https://circuitpython.readthedocs.io/projects/pca9685/en/latest/api.html
https://adafru.it/C5n

After running the command above you should see the LED light up at full brightness! Now turn the LED off with

a duty cycle of 0:

Try an in-between value like 1000:

You should see the LED dimly lit. Try experimenting with other duty cycle values to see how the LED changes

brightness!

For example make the LED glow on and off by setting duty_cycle in a loop:

These for loops take a while because 16-bits is a lot of numbers. CTRL-C to stop the loop from running and

return to the REPL.

Full Example Code

Controlling Servos

We’ve written a handy CircuitPython library for the various PWM/Servo kits called Adafruit CircuitPython

ServoKit (https://adafru.it/Dpu) that handles all the complicated setup for you. All you need to do is import the

appropriate class from the library, and then all the features of that class are available for use.

We’re going to show you how to import the ServoKit class and use it to control servo motors with the Adafruit

16-channel breakout.

If you aren’t familiar with servos be sure to first read this intro to servos page (https://adafru.it/scW) and this

in-depth servo guide page (https://adafru.it/scS).

First connect the servo to channel 0 on the PCA9685. Here is an example of a servo connected to channel 0:

Be sure you’ve turned on or plugged in the external 5V power supply to the PCA9685 board too!

First you’ll need to import and initialize the ServoKit class. You must specify the number of channels available

on your board. The breakout has 16 channels, so when you create the class object, you will specify 16 .

Now you’re ready to control both standard and continuous rotation servos.

Standard Servos

To control a standard servo, you need to specify the channel the servo is connected to. You can then control

movement by setting the angle to a number of degrees.

By default, the Servo class will use actuation range, minimum pulse-width, and maximum pulse-width values

that should work for most servos. However, check the Servo class documentation (https://adafru.it/BNE)

for more details on extra parameters to customize the signal generated for your servos.

With Servo, you specify a position as an angle. The angle will always be between 0 and the actuation range

https://github.com/adafruit/Adafruit_CircuitPython_ServoKit
https://adafru.it/Dpu
https://learn.adafruit.com/adafruit-arduino-lesson-14-servo-motors/servo-motors
https://adafru.it/scW
https://learn.adafruit.com/adafruit-motor-selection-guide/rc-servos
https://adafru.it/scS
https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit_motor.servo.Servo
https://adafru.it/BNE

given when Servo was created. The default is 180 degrees but your servo might have a smaller sweep–change

the total angle by specifying the actuation_angle parameter in the Servo class initializer above.

Now set the angle to 180, one extreme of the range:

To return the servo to 0 degrees:

With a standard servo, you specify the position as an angle. The angle will always be between 0 and the

actuation range. The default is 180 degrees but your servo may have a smaller sweep. You can change the

total angle by setting actuation_range .

For example, to set the actuation range to 160 degrees:

Often the range an individual servo recognises varies a bit from other servos. If the servo didn’t sweep the full

expected range, then try adjusting the minimum and maximum pulse widths using

set_pulse_width_range(min_pulse, max_pulse) .

To set the pulse width range to a minimum of 1000 and a maximum of 2000:

That’s all there is to controlling standard servos with the PCA9685 breakout, Python and ServoKit !

Continuous Rotation Servos

To control a continuous rotation servo, you must specify the channel the servo is on.

Then you can control movement using the throttle.

For example, to start the continuous rotation servo connected to channel 1 to full throttle forwards:

To start the continuous rotation servo connected to channel 1 to full reverse throttle:

To set half throttle, use a decimal:

And, to stop continuous rotation servo movement set the throttle to 0 :

That’s all there is to controlling continuous rotation servos with the PCA9685 16-channel breakout, Python and

ServoKit!

Full Example Code

Python Docs

Python Docs (https://adafru.it/C5p)

Python Docs: ServoKit

Python Docs: ServoKit (https://adafru.it/Dkx)

Downloads

Files

PCA9685 datasheet (https://adafru.it/okB)

Arduino driver library (https://adafru.it/aQl)

EagleCAD PCB files on GitHub (https://adafru.it/rME)

3D models on GitHub (https://adafru.it/19Bk)

Fritzing object in the Adafruit Fritzing library (https://adafru.it/aP3)

https://circuitpython.readthedocs.io/projects/pca9685/en/latest/
https://adafru.it/C5p
https://circuitpython.readthedocs.io/projects/servokit/en/latest/
https://adafru.it/Dkx
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://adafru.it/okB
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://adafru.it/aQl
https://github.com/adafruit/Adafruit-16-Channel-PWM-Servo-Driver-PCB
https://adafru.it/rME
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/815%20Servo%20Driver%2016%20Channel
https://adafru.it/19Bk
https://github.com/adafruit/Fritzing-Library
https://adafru.it/aP3

Schematic & Fabrication Print

Holes are 2.5mm in diameter

FAQ

Can this board be used for LEDs or just servos?

It can be used for LEDs as well as any other PWM-able device!

I am having strange problems when combining this shield with the Adafruit LED Matrix/7Seg

Backpacks

The PCA9865 chip has an “All Call” address of 0x70. This is in addition to the configured address. Set the

backpacks to address 0x71 or anything other than the default 0x70 to make the issue go away.

With LEDs, how come I can’t get the LEDs to turn completely off?

If you want to turn the LEDs totally off use (in Arduino) set PWM(pin, 0, 4096); not set (pin, 0, 4095);

Documents / Resources

CNCU PCA9685 Servo Driver i2C Interface [pdf] Instructions
PCA9685 Servo Driver i2C Interface, PCA9685, Servo Driver i2C Interface, Driver i2C Interface,
i2C Interface, Interface

References

 AM.CO.ZA® Achievement Matters, CNC Machinery, Spare-Parts, Consumables & Materials 2024 -

AM.CO.ZA® Achievement Matters, CNC Machinery, Spare-Parts, Consumables & Materials

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/6b0ce14a9503c3c94b181ce19b91429e3b63c037b94067404b326a1484381357
https://manuals.plus/m/6b0ce14a9503c3c94b181ce19b91429e3b63c037b94067404b326a1484381357_optim.pdf
http://am.co.za
https://manual.tools/?p=15518110#MTA0LjI4LjIwMi4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	CNCU PCA9685 Servo Driver i2C Interface Instructions
	CNCU PCA9685 Servo Driver i2C Interface
	Product Usage Instructions
	Overview
	Pinouts
	Assembly
	Hooking it Up
	Chaining Drivers
	Using the Adafruit Library
	Description
	Controlling Servos
	Standard Servos
	Continuous Rotation Servos
	Full Example Code
	Downloads
	FAQ
	Documents / Resources
	References

