
Home » CMOSTEK » CMOSTEK CMT2280F2 Communication Module Micros User Guide

Contents
1 CMOSTEK CMT2280F2 Communication Module
Micros
2 Product Information
3 Product Usage Instructions
4 FAQ
5 Overview
6 Introduction to IDE
7 Main Screen
8 New Project
9 EEPROM Settings
10 Simulation
11 Compiler Description
12 Instruction
13 Pseudo Instruction
14 Chip Debugging Manual
15 Interface Description
16 Contacts
17 Documents / Resources

17.1 References

CMOSTEK CMT2280F2 Communication Module Micros

CMOSTEK CMT2280F2 Communication Module Micros User
Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/cmostek
https://manuals.plus/cmostek/cmt2280f2-communication-module-micros-manual.pdf
https://manuals.plus/#cmostek_cmt2280f2_communication_module_micros
https://manuals.plus/#product_information
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#faq
https://manuals.plus/#overview
https://manuals.plus/#introduction_to_ide
https://manuals.plus/#main_screen
https://manuals.plus/#new_project
https://manuals.plus/#eeprom_settings
https://manuals.plus/#simulation
https://manuals.plus/#compiler_description
https://manuals.plus/#instruction
https://manuals.plus/#pseudo_instruction
https://manuals.plus/#chip_debugging_manual
https://manuals.plus/#interface_description
https://manuals.plus/#contacts
https://manuals.plus/#documents_resources
https://manuals.plus/#references

Product Information

Specifications

Product Models: CMT2280F2, CMT2281F2, CMT2189B, CMT2189C

Frequency Range: 300 – 960 MHz

Modulation Method: OOK (On-Off Keying)

Product Usage Instructions

The Integrated Development Environment (IDE) software is designed for the 4 wireless MCUs mentioned above.
Its primary function is to debug and simulate chip programs. The IDE offers the following features:

Create and edit source programs using the built-in editor.

Compile the source code.

Download and debug executable programs by connecting to the debugger.

View variables in the watch window.

The main screen consists of 4 basic windows: project window, editing window, output window, and watch

window. These windows are draggable, hovering, and docking windows except for the editing window. The

components of the main screen are:

When moving windows within the screen, docking arrows appear to guide you in positioning the windows.

FAQ

Q: What are the key features of the IDE?

A: The IDE allows users to create, edit, compile, download, debug programs, and view variables.

Q: Which wireless MCUs are supported by the IDE?

A: The IDE supports CMT2280F2, CMT2281F2, CMT2189B, and CMT2189C.

Q: What is the primary function of the IDE?

A: The primary function of the IDE is to debug and simulate chip programs for the supported wireless MCUs.

Overview

This document discusses the program development IDE operation guide for the CMT2280F2, CMT2281F2,

CMT2189B, and CMT2189C. As part of the CMOSTEK NextGenRFTM product family, which covers short-range
wireless communication chips including transmitters, receivers, and transceivers, these 4 wireless MCUs use the
same high-performance RISC core and support FLASH ROM for online debugging.
The product models covered in this document are shown in the table below.
Table 1. Product Models Covered in This Document

Product Mode
l

Frequency

Range

Modulation

Method

Transmittin
g

Power

Sensitivi
ty

Operatin
g

Current

Configuration

Method

Packag
e

CMT2280F2 300 – 960 M
Hz OOK – – 110 dB

m 3.8 mA
MCU

Configuring SOP16

CMT2281F2 300 – 960 M
Hz OOK – – 109 dB

m 4.5 mA
MCU

Configuring SOP16

CMT2189B 240 – 960 M
Hz OOK + 13 dBm – 17.5 mA[1

]

MCU

Configuring SOP14

CMT2189C 240 – 960 M
Hz

OOK/(G)FS
K + 13 dBm – 32.5 mA[2

]

MCU

Configuring SOP14

Notes:

[1]. CMT2189B’s transmitting power and current test conditions are 433.92 MHz, CW mode (namely always in c
arrier transmitting mode), 50% Duty transmitting mode, and transmitting a current of 8.5 mA. [2]. CMT2189C’s tr
ansmitting power and transmitting current test conditions are 433.92 MHz and FSK mode.

Introduction to IDE

The IDE provides development software for the 4 wireless MCUs, CMT2280F2, CMT2281F2, CMT2189B, and
CMT2189C. The major function is to debug and simulate the chip programs.
The IDE provides the following features.

Create and edit source programs using the built-in editor.

Compile the source code.

Download and debug executable programs by connecting to the debugger.

View variables in the watch window.

Main Screen

As shown in the below figure, generally 4 basic windows are contained in the main screen including the project

window, editing window, output window, and watch window, which are draggable, hovering, and docking

windows except the editing window.

For example, click and drag a window area, and the docking arrow appears as shown in Figure 2. When a

window is dragged into the direction specified by an arrow, it will dock in the position of the screen

corresponding to the direction of the docking arrow.

Project Window
The project window contains 2 tabs, File View and Class View, as shown in the below figure. File View displays
project information, including device name, source file, data file, reference file, and output file. Double-click a file

name under Source File or Include File to open it. Class View displays all labels after compiling completes.
Double-clicking a label in the editing window can locate the label in the source file.

Editing Window
Users edit source files and reference files in the editing window. The editor colors keywords, with commands in
blue, immediate data in red, and comments in green. Press Ctrl and scroll the middle mouse button to zoom in or
out. It will exit debug mode automatically when file editing and saving are performed during debugging. Then users
need to recompile and re-download before the next debugging. If a document open in the editing window is
modified by an external editor, it will prompt to reload. When this occurs in the debugging state, it will exit
debugging as well. Users can debug it again only after recompiling and downloading.

Output Window
The output window contains 3 tabs, Build, Debug, and Find as shown in the below figure (note that the tabs in the
output window cannot be separated. while tabs in other windows can be separated or combined). The build tab
displays the output information such as compiling and downloading. Compiling errors display the file containing the
compiling error, line number, and line statement of the error. Double-clicking can locate the line in the editing area.
To debug and watch a variable, users can input the variable to be watched in the Debug tab, the variable and the
corresponding address will be refreshed during the debugging. If the variable is a bit variable, the bit address and

the corresponding bit value will be refreshed. Find tab lists the files and line numbers searched out. Double-click a
line can locate the line in the editing window.

Watch Window
The watch window consists of 4 tabs, RAM, EEPROM, STACK, and Register as shown in the below figure.
RAM tab displays the RAM value. During debugging, the RAM with change is marked in red. After starting the
debugging, users can double-click to modify a RAM value. After the modification, click anywhere in the RAM tab,
and then the modified value will be written into the chip.

The EEPROM tab displays the EEPROM value. In the EEPROM tab, users can import data through the menu

Load EEPROM Data…

Users can also define EEPROM data in a source file through the DE command. Similar to RAM modification, It

can also be edited in the EEPROM tab. Double-click and modify the EEPROM value, then click anywhere in the

EEPROM tab, and the modified value will be written to the chip. Select the menu Export EEPROM Data… to

export the EEPROM data. Note that if the program modifies the value of the EEPROM, the EEPROM data

output after debugging may be different from the EEPROM data output when compiling completes.

The STACK tab shows stack values, which cannot be modified. It is only for information watch (watch stack

pushing and popping information) purposes.

The register tab displays the SFR function-specific register information, including the register address, register

name and register value, and the data format of the displayed value (H for hexadecimal and B for binary). Click

+ to expand the display to show the bit variable and the corresponding bit value. Click – to collapse the bit

variable display. The display is refreshed during debugging and registers in change are marked in red. During

debugging, double-click to modify the register value. Click anywhere in the Register tab, the modified value will

be written to the chip.

Menu, Toolbar, and Status Bar
The menu contains all the operations. The toolbar corresponds to the commonly used menu items. The status bar
shows the progress information, chip status, and the debugger version number, as shown in the below figure.

New Project

The IDE uses project management mode. Users need to build a project first by selecting Project -> New Project,
then a new project dialog pops up as shown in the below figure. Fill in the Project Name, select Project Patch, and
Device (select CMT60F02X). If users need to create a project folder, check the Create directory for the project.

After the new project operation is completed, users need to add source files. 2 ways are available, 1) select
Project -> Add File… 2) select Source File in the project window, right-click, and select Add File from the pop-up
menu….
Notes

1. If the added file is not in the project directory, it will be copied to the project directory automatically.

In addition to adding source files, users can add data files as well. 2 ways are available 1) select Project ->

Load EEPROM Data… 2) in the project window, select EE Data File, right click and select Add File… in the

pop-up menu.

2. If the added file is not in the project directory, it will be copied to the project directory automatically. Include File

and Output File are automatically generated after compilation and users do not need to add them.

Compiling

Select the menu Debug -> Build (F7) or click to compile. Before compiling, the Options dialog box will pop
up as shown in the below figure. Select the corresponding option and click OK to start compiling. The compiling
information will be displayed in the Build window. In case of compiling error, double-click the error message to
locate the error line. See Appendix 1 for detailed compiler descriptions.

EEPROM Settings

The EEPROM can be imported in 3 ways, 1) select menu Project -> Load EEPROM Data… 2) define data

through DE command 3) double-click EEPROM tab to input data.

In the case of menu import and DE data definition, the compiled DE definition will overwrite the data imported

by a file. For method 3), users can only input after the simulation starts by double-clicking the EEPROM. After

users double-click the modification, it will be written to the EEPROM immediately with immediate reading back

and display on the screen.

Select menu Project -> Export EEPROM Data… to export the data in the current EEPROM tab.

Note

1. The EEPROM data is related to program operation.

Downloads
Select the menu Debug -> Build All (Ctrl+F7) to erase, download, and reset. After a successful download, the
simulation toolbar becomes valid. When the simulation starts and the file is modified and saved, the simulation
toolbar becomes invalid. Users need to recompile and download. If a program is not compiled before it is selected
for download, it will perform compiling first, then erasing, downloading, and resetting.

Simulation

Set Breakpoint
2 ways are available, 1) click to select the statement line to be set, select the menu Debug -> BreakPoint (F9), or
click. It will add a breakpoint if it is set for the first time. It will delete the breakpoint if it’s set again. 2) click the line
number in the editing window to set a breakpoint, and click again to delete the breakpoint. Breakpoints are marked
with a yellow circle. Currently, IDE-supported devices only allow one breakpoint to be set, so the last breakpoint is
automatically deleted each time a new breakpoint is set.

Reset (Ctrl + F5)

Reset a device and the PC returns to 0. After reset completes, RAM, EEPROM, STACK, and registers are

refreshed and chip status displays in the status bar.

Step Into (F11)

Step Into is a single-step run. For Step Info, when a Call instruction is executed, it enters a sub-function. When

the execution completes, RAM, EEPROM, STACK, and registers are refreshed and chip status displays in the

status bar.

Step Over (F10)

Step Over is a single-step run. For Step Over, when a Call instruction is executed, it does not enter a sub-

function. When the execution completes, RAM, EEPROM, STACK, and registers are refreshed and chip status

displays in the status bar.

Run to Cursor (Ctrl + F10)

For Run to Cursor, users need to keep the cursor in the statement line where execution will stop, and the

program will stop at the cursor position. If the cursor cannot be reached, the program will run at full speed.

When execution completes, RAM, EEPROM,

STACK, registers are refreshed and chip status is displayed in the status bar.

Go (F5)

Go will run to the breakpoint. Users need to set the breakpoint before execution, and the program runs to the

breakpoint and then stops. If the breakpoint cannot be reached, the program will run at full speed. When

execution completes, RAM, EEPROM, STACK, and registers are refreshed and chip status displays in the

status bar.

Stop (Shift + F5)

It is to stop a program from running at full speed. When the execution completes, RAM, EEPROM, STACK, and

registers are refreshed and chip status displays in the status bar.

Compiler Description

Variable Naming Rules

Variables must start with a letter, consisting of letters numbers, and underscores, which are not case-sensitive.

Variable names cannot be keywords including instructions and pseudo instructions.

Digital Format

It supports binary, hexadecimal, and decimal as follows:

Binary

1. 0/1 characters ending with B, e.g. 00010110B.

2. 0/1 characters starting with B” and ending with “, e.g. B”00010110”.

Hex

1. Hexadecimal number ending with H, e.g. 1FH.

2. Hexadecimal number starting with 0x, e.g. 0x1F.

3. Hexadecimal number starting with H” and ending with “, e.g. H”1F”.

Decimal

1. A number without a suffix is a decimal, e.g.16.

2. Decimal numbers starting with ., e.g. .10.

Address Label
A label name follows the variable naming rules, and the same name cannot be defined repeatedly. A label can
contain a suffix of colon: or does not contain colon :. All non-instructed and undefined single strings will be
identified as labels. A label without a colon cannot be in the same line as an instruction. A label with a colon can be
in the same line as an instruction.

Instruction

Table 2. Instructions

CMT PIC Instruction
Cycle Function Operation Status

BCRR, b BCF F, b 1 Bit clear 0→R(b) NONE

BSR R, b BSF F, b 1 Bit set 1→R(b) NONE

BTSC
R, b BTFSC F, b 1(2) Bit test, skip if 0 Skip if R(b)=0 NONE

BTSS
R, b BTFSS F, b 1(2) Bit test, skip if 1 Skip if R(b)=1 NONE

NOP NOP 1 No operation None NONE

CLRWDT CLRWDT 1 Clear WDT 0→WDT /PF, /TF

SLEEP SLEEP 1 Enter Sleep Mode 0→WDT� STOP OSC /PF, /TF

STTMD OPTION 1 Store W TO TMODE W→TMODE NONE

CTLIO
R T R I S R 1 Control IO direction r

eg W→IODIRr NONE

STR R MOVW F F 1 Store W to reg W→R NONE

LDR R, d MOVF F, d 1 Load reg to d R→d Z

SWAPR R,
d SWAPF F, d 1 Swap halves reg [R(0-3)R(4-7)]→d NONE

INCR
R, d INCF F, d 1 Increment reg R+1→d Z

INCRSZ R,
d INCFSZ F, d 1�2� Increment reg, skip if

0 R+1→d NONE

ADDWR R,
d ADDWF F, d 1 Add W and reg W+R→d C, HC, Z

SUBWR R,
d SUBWF F, d 1 Sub W from reg R-W→d or R+/W+1→d C, HC, Z

DECR
R, d DECF F, d 1 Decrement reg R-1→d Z

DECRSZ R
, d DECFSZ F, d 1�2� Decrement reg, skip

if 0 R-1→d NONE

ANDWR R,
d ANDWF F, d 1 AND W and reg R&W→d Z

IORWR R,
d IORWF F, d 1 Inclu.OR W and reg W|R→d Z

XORWR R,
d XORWF F, d 1 Exclu.OR W and reg W^R→d Z

COMR R, d COMF F, d 1 Complement reg /R→d Z

RRR R, d

RRF F, d

1

Rotate right reg

R(n)→R(n-1)�C→R(7)�

R(0)→C

C

RLR R, d

RLF F, d

1

Rotate left reg

R(n)→R(n+1)�C→R(0),

R(7)→C

C

CLRW CLRW 1 Clear working reg 0→W Z

CLRR R CLRF F 1 Clear reg 0→R Z

RETI RETFIE 2 Return from interrupt Stack→PC�1→GIE NONE

RET RETURN 2 Return from subrouti
ne Stack→PC NONE

L CALL N CALL k 2 Long CALL subroutin
e N→PC, PC+1→Stack NONE

LJUMP
N GOTO 2 Long JUMP address N→PC NONE

LDWI I MOVLW k 1 Load immediately to
W I→W NONE

ANDWI I ANDLW k 1 AND W and imm W&I→W Z

IORWI I IORLW k 1 Inclu.OR W and imm W|I→W Z

XORWI I XORLW k 1 Exclu.OR W and im
m W^I→W Z

RETW I RETLW k 2 Return, place imm to
W Stack→PC�I→W NONE

ADDWI I ADDLW k 1 Add imm to W W+I→W C, HC, Z

SUBWI I SUBLW k 1 Subtract W from imm I-W→W C, HC, Z

Pseudo Instruction

ORG

Format: ORG ADDR

Description: define the PC address. The ADDR cannot be smaller than the current PC or larger than the

maximum PC.

Example

ORG 0000H

Goto START

ORG 0004H ;interrupt entry

JUMP INTtimer0

Include

Format: #Include<filename>, #include “filename”

Description: <filename> is a file in the system directory, filename is a file in the project directory, and the file

type can be a header file of .H or.HIC, or a source file of.ASM. A header file must be imported before the PC

address is 0, and the source file can be imported anywhere in a file.

Example

#INCLUDE <CMT2189B.inc>

#INCLUDE “LED.ASM”

EQU

Format: variable name EQU RAM address

The description of the variable name follows the variable naming rules. The same variable name does not allow

multiple addresses. Multiple variables are allowed to correspond to the same address. Note that the RAM

address will not be checked if the variable is not used,

Example

LEDLEVEL EQU 0x40

DB

Format: variable name DB?

Description: the variable name follows the variable naming rules. The same name cannot be defined

repeatedly. The address is automatically assigned by the compiler without any need for specifying the

corresponding RAM address. Note that the address is not assigned when a variable is not in use.

Example

V1 DB?

DE

Format: DE Data0, Data1, … Datan

Description: in the EEPROM data table, the address of the data table must be after 0x4100. The data after the

DE table is arranged sequentially starting from the address defined by ORG. The number of data is unlimited,

however it must be in the same line.

Example

ORG 4110H

DE 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17

DE 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F

DBIT

Format: variable name DBIT?

Description: it defines a bit variable that follows the variable naming rules. The address is automatically

assigned by the compiler without specifying the corresponding RAM address. Note that the address is not

assigned when a variable is not in use. The variables defined by this instruction can only be used in bit

operation instructions including BCR, BSR, BTSC, BTSS, BCF, BSF, BTFSC, and BTFSS.

Example

V1_1 DBIT ?

Define

Format: #define identifier string

Description: macro definition without parameters. A macro definition is to use a macro name to represent a

string and replace the macro name with the string, this is just a simple substitution, the string can contain any

characters, can be constant, also Can be an expression, the preprocessor does not check it. If there is an error,

it can only be found when compiling the source program that has been expanded by the macro.

Example

#define Defname 1+5 ORG 0000H

……

LDWI Defname

MARCO

Format: macro name MARCO par1…part n

Macro content

ENDM

Description: macros with parameters. Macro names and parameter names follow the variable naming
convention. A macro module with ENDM. No labels are allowed within the macro definition.

Example

Delayms macro a1, a2, a3

LDWI a1

STR DELAYCNT1

LDWI a2

STR DELAYCNT2

LDWI a3

STR DELAYCNT3

CALL DELAYLOOP

Endm

ORG 0000H

……

Delayms 0xF0, 0x49, 0x30

Ifdef

Format: ifdef conditional macro

; program 1

Else

; block 2 endif

Description: if a conditional macro is not equal to 0, block 1 is executed, otherwise block 2 is executed. Note that
this instruction cannot be nested.
Example

Ifdef defame

LJUMP RESTART_WDT DECRSZ DELAYCNT1, F

LJUMP POWERDOWN_2SLOOP

Else

DECRSZ DELAYCNT2, F

LJUMP POWERDOWN_2SLOOP DECRSZ DELAYCNT3, F

LJUMP POWERDOWN_2SLOOP

Endif

Chip Debugging Manual

Overview

This appendix defines and describes the interface between the IDE development board and the outside world

in the product integration development environment, which covers related hardware and software interfaces.

Interface Description

The interface description for Figure 12 is as follows.

USB1: connection between USB port and PC.

J11: program interface, which is the communication control port of a target chip with the connections from top

to bottom listed in the below table.

Table 3. Connection Between Debugging Interface and Target Chip

J11 Interface CMT2280F2 CMT2281F2 CMT2189B CMT2189C

VCC
DVDD

Pin13

DVDD

Pin13

DVDD/AVDD

Pin1/Pin6

VDD

Pin1/Pin11

GND
GND

Pin2

GND

Pin3

GND

Pin7

GND

Pin2/Pin10/Pin13

CLK
PA0/ICSPCLK

Pin9

PA0/ICSPCLK

Pin9

PA0/ICSPCLK

Pin12

PA0/ICSPCLK

Pin8

DATA
PA1/ICSPDAT

Pin10

PA1/ICSPDAT

Pin10

PA1/ICSPDAT

Pin13

PA1/ICSPDAT

Pin9

P1: external power input

J7: download board GND

J8: target MCU 3.3 V power supply selection

J9: target MCU 3.7 V power supply selection

J10: target MCU 5 V power supply selection (only for CMT2281F2)

J13: external input power supply selection

Notes

For the 4 short-circuit points, J8, J9, J10, and J13, only one can be shorted.

SPWB1: reset button for download board.

D1: indicator light.

Red LED (always on): power-on indication, at this time, the debugger has not communicated with the PC

successfully yet.

Green LED (always on): the debugger and the PC are connected successfully.

Yellow LED (always on): the debugger is in BOOT mode, waiting for the online firmware update.

Yellow LED (flashing): the debugger is operating.

Considerations

1. The connection between a PC host and the IDE development board is simple and uses a standard USB

interface with no need for additional driver installation for the debugger. When a PC system is plugged in for the

first time, the driver will be installed automatically, and then users can use the debugger normally.

2. The debugger board is powered by the PC via a USB 5 V port. When a target chip/board is debugged using the

debuggerboard, it can be powered directly by the debugger. The power supply voltage can be switched and

adjusted through a short-circuit cap. It supports the voltages of 3.3 V, 3.7 V, and 5 V and only one of them can

be shorted at the same time. If users need an external power supply, it requires disconnecting the target board

power and then connecting the external power supply to the external power interface of the debugger board.

Then the power is provided to the target board through the VCC program interface. The maximum input voltage

of the external power interface cannot exceed 12 V.

3. Each time when switching power or replacing the target chip, users need to press the reset button on the

debugger board to reconnect the target chip. When the LED on the debugger board turns green, it means

communication with the host computer is successful. At this time, users can operate the host computer for

debugging.

4. Upon each power-up, the host PC will detect the firmware version number. If the firmware version number is

found too low, the system will jump into boot mode. At this time, the yellow LED light is always on and the host

will update firmware automatically. Please don’t disconnect the USB during this process. In case it is

disconnected or firmware update fails, it requires users to press the reset button or re-plug USB to let it enter

boot mode again for firmware re-update.

Revise History

Table 4. Revise History Records

Version No. Chapter Description Date

1.0 All Initial version 2017-11-25

1.1 2 Update some IDE screenshots 201-11-28

Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch
Address: 2/F Building 3, Pingshan Private Enterprise S.T. Park, Xili, Nanshan District, Shenzhen, Guangdong,
China

Tel: +86-755-83231427

Post Code: 518057

Sales: sales@cmostek.com

Supports: support@cmostek.com

Website: www.cmostek.com

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is
assumed for inaccuracies, and specifications within this document are subject to change without notice. The
material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not
authorized for use as critical components in life support devices or systems without the express written approval of
CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other
names are the property of their respective owners.

Documents / Resources

CMOSTEK CMT2280F2 Communication Module Micros [pdf] User Guide
CMT2280F2, CMT2281F2, CMT2189B, CMT2189C, CMT2280F2 Communication Module Micr
os, CMT2280F2, Communication Module Micros, Module Micros, Micros

References

 CMOSTEK �����

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

mailto:sales@cmostek.com
mailto:support@cmostek.com
http://www.cmostek.com
https://manuals.plus/m/c3f4adbc9d15f4d1133f371fb963748abaa901375777497ee2dd4d39395d66bd
https://manuals.plus/m/c3f4adbc9d15f4d1133f371fb963748abaa901375777497ee2dd4d39395d66bd_optim.pdf
http://www.cmostek.com
https://manual.tools/?p=13685797#MTA0LjI4LjIwMi4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	CMOSTEK CMT2280F2 Communication Module Micros User Guide
	CMOSTEK CMT2280F2 Communication Module Micros
	Product Information
	Product Usage Instructions
	FAQ
	Overview
	Introduction to IDE
	Main Screen
	New Project
	EEPROM Settings
	Simulation
	Compiler Description
	Instruction
	Pseudo Instruction
	Chip Debugging Manual
	Interface Description
	Contacts
	Documents / Resources
	References

