

BROADCOM HEDS-9940PRGEVB Evaluation Board and Programming Kit User Guide

Home » BROADCOM » BROADCOM HEDS-9940PRGEVB Evaluation Board and Programming Kit User Guide 12

HEDS-9940PRGEVB Evaluation Board and Programming Kit User Guide Version 1.0

Contents

- 1 HEDS-9940PRGEVB Evaluation Board and Programming Kit
- 2 HEDS-9940EVB Evaluation Board
- **3 Select Options**
- 4 Board Schematic and Pin Assignment
- 5 Code Wheel Drawing
- 6 HEDS-9940PRGEVB Programming USB-SPI Kit
- 7 AEDR-9940 Gateway Programming GUI
- 8 Using the AEDR-9940 Gateway SPI Protocol to Perform **Calibration**
- 9 Documents / Resources
 - 9.1 References

HEDS-9940PRGEVB Evaluation Board and Programming Kit

Copyright © 2024 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

HEDS-9940EVB Evaluation Board

1.1 Top and Bottom Views

Figure 1: Bottom View of the PCB

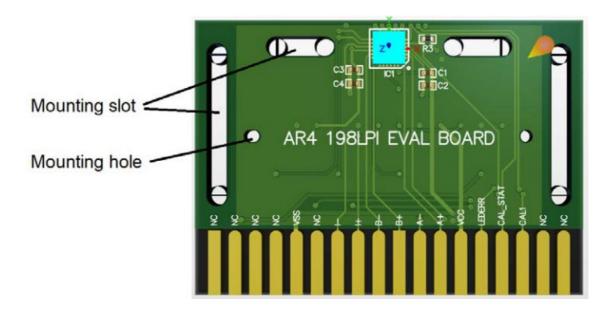
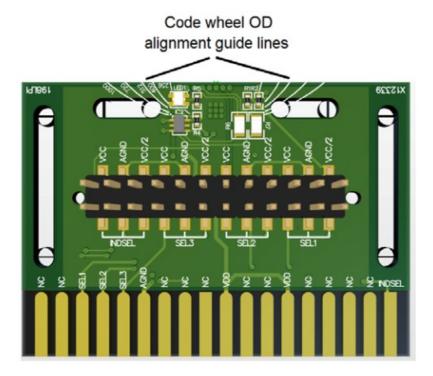



Figure 2: Top View of the PCB

The silk screen-printed guide line on the PCB is to help in providing visual alignment of the code wheel edge (outer diameter) for each of the different ROP (CPR) tracks. A sample diagram showing the position when the encoder is aligned to the 500 CPR track is shown in Figure 3.

Figure 3: Sample Encoder Aligned to 500 CPR Track (HEDS-9940EVB1/HEDS-9940PRGEVB1)

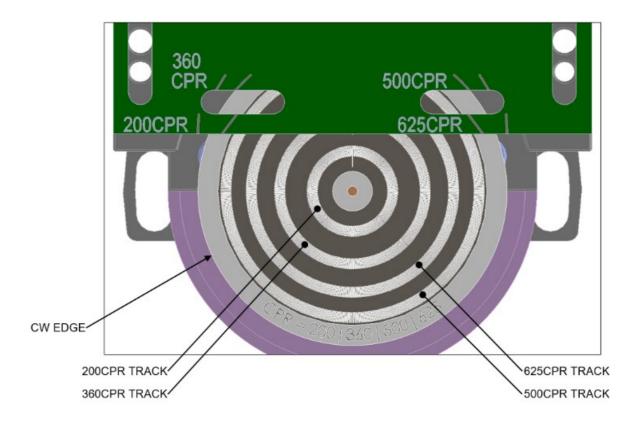
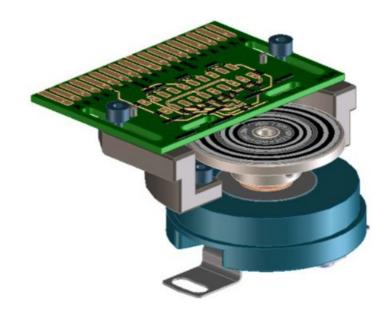
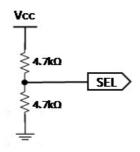



Figure 4: Sample Evaluation Board Mounting with Reference to Code Wheel

Select Options

Table 1: Selection Table for AEDR-9940 198.4375 LPI

N o.	SEL1	SEL2	SEL3	Interpola tion Fact or	INDEX SEL	Index
					Low	Interpolation 1X – Index Gated 90 degrees
1	Low	Low	Low	1X	High	Interpolation Ix – Index Gated 180 degrees
					Open	Interpolation 1X – Index Raw (Ungated)
					Low	Interpolation 2X – Index Gated 90 degrees


2	High	Low	Low	2X	High	Interpolation 2X – Index Gated 180 degrees
					Open	Interpolation 2X – Index Gated 360 degrees
					Low	Interpolation 3X – Index Gated 90 degrees
3	Opena	Low	Low	3X	High	Interpolation 3X – Index Gated 180 degrees
					Open	Interpolation 3X – Index Gated 360 degrees
					Low	Interpolation 4X – Index Gated 90 degrees
4	Low	High	Low	4X	High	Interpolation 4X – Index Gated 180 degrees
					Open	Interpolation 4X – Index Gated 360 degrees
					Low	Interpolation 5X – Index Gated 90 degrees
5	High	High	Low	5X	High	Interpolation 5X – Index Gated 180 degrees
					Open	Interpolation 5X – Index Gated 360 degrees
					Low	Interpolation 6X – Index Gated 90 degrees
6	Open°	High	Low	6X	High	Interpolation 6X – Index Gated 180 degrees
	Low	Open°	Low	8X 9X	Open	Interpolation 6X – Index Gated 360 degrees
					Low	Interpolation 8X – Index Gated 90 degrees
7					High	Interpolation 8X – Index Gated 180 degrees
					Open	Interpolation 8X – Index Gated 360 degrees
					Low	Interpolation 9X – Index Gated 90 degrees
8					High	Interpolation 9X – Index Gated 180 degrees
					Open	Interpolation 9X – Index Gated 360 degrees
					Low	Interpolation 10X – Index Gated 90 degrees
9	Opena	Open°	Low	10X	High	Interpolation 10X – Index Gated 180 degrees
					Open	Interpolation 10X – Index Gated 360 degrees
					Low	Interpolation 12X – Index Gated 90 degrees
1 0	Low	Low	High	12X	High	Interpolation 12X – Index Gated 180 degrees
					Open	Interpolation 12X – Index Gated 360 degrees
					Low	Interpolation 16X – Index Gated 90 degrees
1	High	Low	High	16X	High	Interpolation 16X – Index Gated 180 degrees
					Open	Interpolation 16X – Index Gated 360 degrees
	Opena	Low	High	20X	Low	Interpolation 20X – Index Gated 90 degrees
1 2					High	Interpolation 20X – Index Gated 180 degrees
					Open	Interpolation 20X – Index Gated 360 degrees
					Low	Interpolation 25X – Index Gated 90 degrees

3	Low	High	High	25X	High	Interpolation 25X – Index Gated 180 degrees
					Open	Interpolation 25X – Index Gated 360 degrees
					Low	Interpolation 32X – Index Gated 90 degrees
1	High	High	High	32X	High	Interpolation 32X – Index Gated 180 degrees
4					Open	Interpolation 32X – Index Gated 360 degrees
					Low	Interpolation 50X – Index Gated 90 degrees
		High	High	50X	High	Interpolation 50X – Index Gated 180 degrees
					Open	Interpolation 50X – Index Gated 360 degrees
					Low	Interpolation MX – Index Gated 90 degrees
1 6		Opena	High	64X	High	Interpolation MX – Index Gated 180 degrees
					Open	Interpolation MX – Index Gated 360 degrees
					Low	Interpolation 80X – Index Gated 90 degrees
1 7	High	Opena	High	80X	High	Interpolation 80X – Index Gated 180 degrees
•					Open	Interpolation 80X – Index Gated 360 degrees
					Low	Interpolation 100X – Index Gated 90 degrees
1 8	Open°	Open°	High	100X	High	Interpolation 100X – Index Gated 180 degrees
					Open	Interpolation 100X – Index Gated 360 degrees
					Low	Interpolation 128X – Index Gated 90 degrees
1 9			Opena	128X	High	Interpolation 128X – Index Gated 180 degrees
					Open	Interpolation 128X – Index Gated 360 degrees
2			Opena		Low	Interpolation 160X – Index Gated 90 degrees
	High			160X	High	Interpolation 160X – Index Gated 180 degrees
					Open	Interpolation 160X – Index Gated 360 degrees
					Low	Interpolation 256X – Index Gated 90 degrees
2	Opena	Low	Opena	256X	High	Interpolation 256X – Index Gated 180 degrees
					Open	Interpolation 256X – Index Gated 360 degrees
					Low	Interpolation 320X – Index Gated 90 degrees
		High	Opena	320X	High	Interpolation 320X – Index Gated 180 degrees
					Open	Interpolation 320X – Index Gated 360 degrees
_		High	Opena		Low	Interpolation 640X – Index Gated 90 degrees
2 3	High			640X	High	Interpolation 640X – Index Gated 180 degrees
					Open	Interpolation 640X – Index Gated 360 degrees
					Low	Interpolation 1000X – Index Gated 90 degrees

2	Open" High Opena		1000X	High	Interpolation 1000X – Index Gated 180 degrees	
					Open	Interpolation 1000X – Index Gated 360 degrees
2 5 Low	Open°	Opena	Ungated Digital	Low	Analog SIN/COS (500 mVpp). Digital Index (Ungated)	
				High	Analog SIN/COS (500 mVpp). Digital Index (Ungated)	
					Open	Analog SIN/COS (500 mVpp). Digital Index (Ungated)
				Analog	Low	Analog SIN/COS (500 mVpp), Analog Index (1 Vpp)
2 6 High	Opena	Opena	Ungated Digital	High	Analog SIN/COS (1 Vpp), Digital Index (Ungated)	
			Analog	Open	Analog SIN/COS (1 Vpp), Analog Index (1Vpp)	
			Opena	SPI Mode	Low	SPI Mode: Program Selection
2 7 Opena	Opena	Opena			High	SPI Mode: Output Enabled
				Open	SSI 3W Modeb	

- a. Open selection must be connected to the middle of a voltage divider circuit. See Figure 5.
- b. SSI 3W mode is for monitoring purposes only.

Figure 5: Voltage Divider Circuit

Use 2 x 4.7-k Ω resistors (VCC to GND).

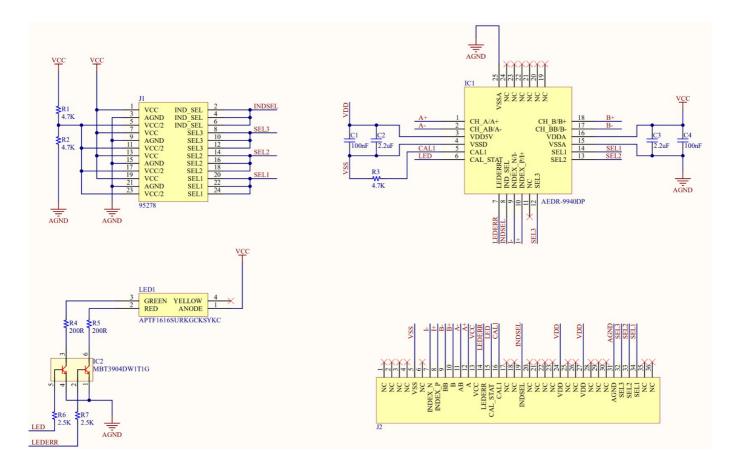
The digital interpolation factor is based on the following equation for various rotational speeds (RPM) and count per revolution (CPR) values.

RPM = (Count Frequency x 60) / CPR

CPR (@ 1X interpolation) is based on the following equation that is dependent on radius of operation (ROP).

CPR = LPI x 2π x ROP (inch) or CPR = LP mm x 2π x ROP (mm)

NOTE: LP mm (lines per mm) = LPI / 25.4


2.1 Programmable Select Options

SPI programmable with interpolation factor from 1X to 1024X.

- 1. Configure external selection to SPI Mode: Program Selection.
- 2. For signals output after configuration, set external selection to SPI Mode: Output Enabled.

Board Schematic and Pin Assignment

Figure 6: HEDS-9930EVB Evaluation Board Schematic

3.1 Connector Assignment

Table 2: Connector 1 Pin Assignment

Connector 1 (Top Side)	Label	Connector 1 (Bottom Si de)	Label
1	NC	1	NC
2	NC	2	NC
3	SEL1	3	CALI
4	SEL2	4	CAL STAT
5	SEL3	5	LEDERR
6	AGND	6	VCC
7	NC	7	A+
8	NC	8	A-
9	NC	9	B+
10	VDD	10	B-

Table 2: Connector 1 Pin Assignment

Connector 1 (Top Side)	Label	Connector 1 (Bottom Si de)	Label
11	NC	11	I+
12	NC	12	I-
13	VDD	13	NC
14	NC	14	VSS
15	NC	15	NC
16	NC	16	NC
17	NC	17	NC
18	INDSEL	18	NC

The finger design of Connector 1 is a match to either of the following card edge connectors:

- EDAC, CONN EDGE DUAL FMALE 36POS 0.100, P/N# 395-036-520-202
- SULLINS, CONN EDGE DUAL FMALE 36POS 0.100, P/N# EBC18DREH

The use of the above mentioned card edge connector is not needed if necessary connections can be made using manual soldering to the relevant card edge fingers.

Table 3: Connector 2 Pin Assignment

Connector 1 (Top Side)	Label	State
1		VCC
2	SEL1	AGND
3		OPEN
4		VCC
5	SEL2	AGND
6		OPEN
7		VCC
8	SEL3	AGND
9		OPEN
10		VCC
11	INDEX SEL	AGND
12		OPEN

NOTE: Refer to Table 1, Selection Table for AEDR-9940 198.4375 LPI for the various interpolation selection options available by changing the SEL1, SEL2, and SEL3 jumper positions.

Code Wheel Drawing

For the AEDR-9940 evaluation board sample, the matching code wheel sample drawings are shown in the following figures.

For a detailed drawing of the sample code wheel, request from your regional FAE.

Figure 7: Code Wheel Multiple Optical Radius 200, 360, 500, 625 CPR Base

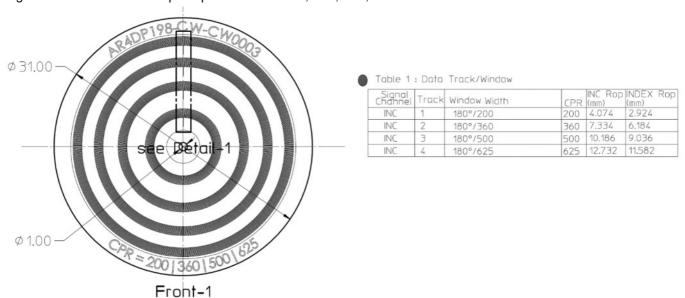
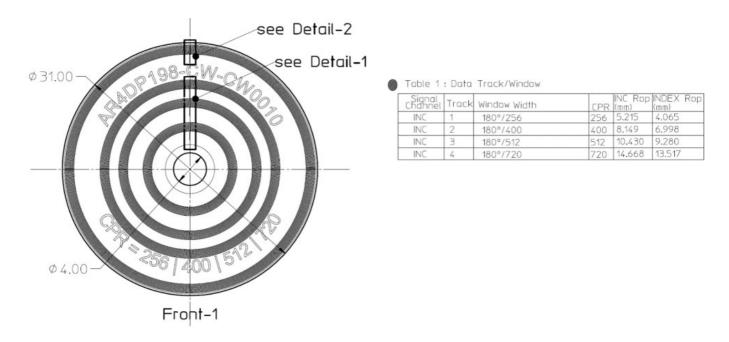
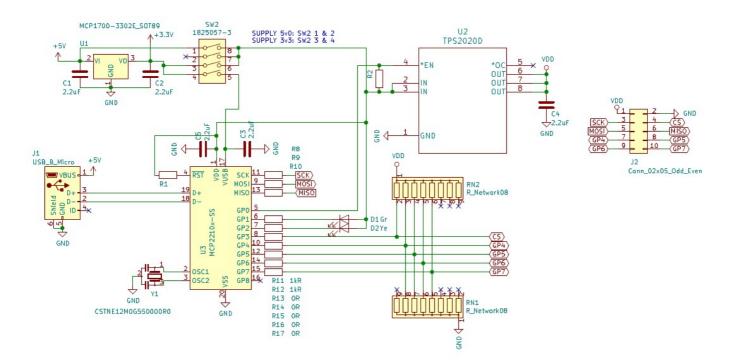



Figure 8: Code Wheel Multiple Optical Radius 256, 400, 512, 720 CPR Base

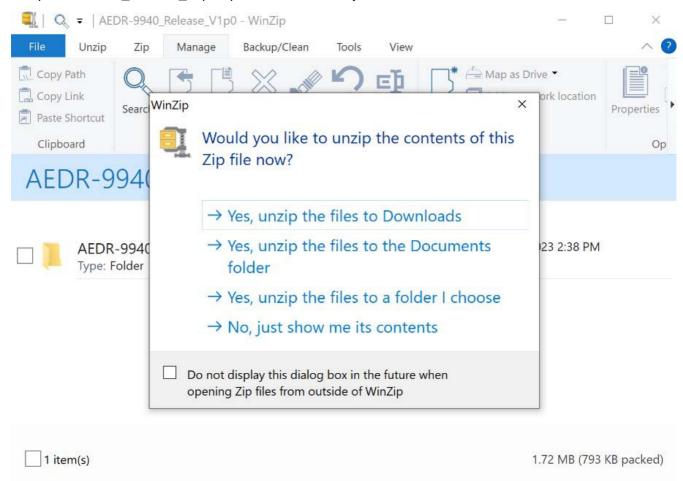
HEDS-9940PRGEVB Programming USB-SPI Kit


In order to program interpolation value other than the ones offered in Table 1, Selection Table for AEDR-9940 198.4375 LPI using the SEL1, SEL2, and SEL3 option pins, you may connect to the AEDS-9940 encoder ASIC through the SPI interface.

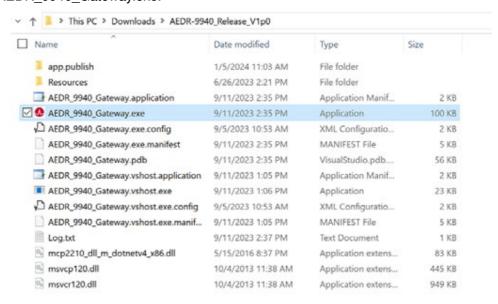
Broadcom® offers a simple USB to SPI programming kit, together with a PC-based custom program for you to program the desired interpolation value.

Figure 9: The HEDS-9940PRGEVB USB to SPI Programmer Kit

Figure 10: The HEDS-9940PRGEVB USB to SPI Programmer Kit Schematic

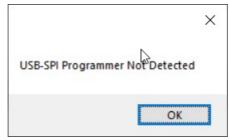

AEDR-9940 Gateway Programming GUI

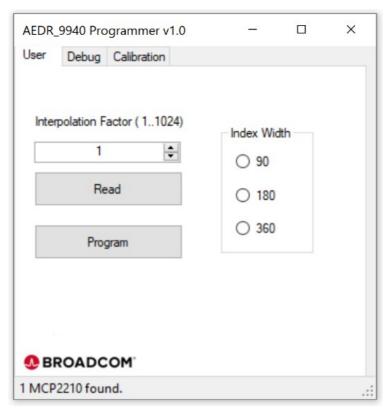
The HEDS-9940PRGEVB kit is to be used together with AEDR_9940_Gateway.exe to program the desired interpolation factor into the encoder ASIC.


1. Download the zip file from: https://broadcom.box.com/v/HEDS-9940-Programming-Software

- 2. Save the zip file into a local drive on your PC.
- 3. Unzip AEDR-9940_Release_Vxpx.zip to a local folder of your choice.

4. Double-click AEDR_9940_Gateway.exe.


5. Once the AEDR_9940_Gateway.exe software is running, the board should be detected.


Both amber and green LEDs are detected by the AEDR 9940 Gateway.exe software.

6. If the following message appears, check the board connections and try again.

- 7. Click Read to read back saved settings from the AEDR-9940 encoder ASIC.
 - a. If existing settings are read out successfully, it displays the saved Interpolation Factor and Index Width settings.

- b. If the AEDR-9940 is not connected or detected, the program terminates. Refer to log.txt in the same directory to check the failure status.
- c. If there is a communication failure with the AEDR-9940, the program exits. Refer to log.txt to check the error message.
- 8. Enter the interpolation factor required (1 to 1024) and index width setting. Click Program to save the settings.

9. The message Program DUT OK! displays when the settings are save successfully.

Using the AEDR-9940 Gateway SPI Protocol to Perform Calibration

Motor rotation with minimal speed ripple or smooth linear movement is required during calibration. This is to enable Index signals to be automatically adjusted to obtain a good crossover.

- 1. Turn the motor at a constant speed of 500 rpm or linear stage reciprocal movement (stroke[50 mm/s])
- 2. Click Auto Calibration.
- 3. Calibration in progress. Calibrating displays in Status.
- 4. The Status displays Auto Cal Done if calibration is successfully completed. Otherwise, it displays Error.

NOTE: A calibration error may be caused by wide spatial displacement or failure to obtain index signals crossover.

Documents / Resources

BROADCOM HEDS-9940PRGEVB Evaluation Board and Programming Kit [pdf] User Guide HEDS-9940PRGEVB, HEDS-9940PRGEVB Evaluation Board and Programming Kit, Evaluation Board and Programming Kit, Board and Programming Kit, Frogramming Kit, Kit

References

- Broadcom Inc. | Connecting Everything
- Box
- User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.