Manuals+ — User Manuals Simplified.

breeze HPC Tool Used to Solve Deployment User Manual

Home » breeze » breeze HPC Tool Used to Solve Deployment User Manual ™

="Mbreeze

Version 2.14.0
Ellexus — Breeze Trace-Only User Manual

Contents

1 Introduction
2 Installation
3 Tracing an application
4 Removing confidential information from the trace
output
5 Documents / Resources
5.1 References
6 Related Posts

Introduction

Breeze HPC is a tool used to solve deployment, and tuning issues when installing and running complex Linux
applications.

Breeze TraceOnly is a small download that lets you trace applications and sends them to someone who has a full
Breeze license.

You can't look at the data without a Breeze license, but if your software vendor does, then you can send them data
so they can work out what the problem is.

Breeze TraceOnly traces application arguments, environment, and dependencies for use in troubleshooting build
or installation issues and resolving problems caused by missing files or libraries.

Breeze TraceOnly also records I/O patterns so that you can understand how your programs are using the network
and file system. This data can be used to resolve performance problems and assess the ability of your application
to scale in parallel environments.

Installation

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/breeze
https://manuals.plus/breeze/hpc-tool-used-to-solve-deployment-manual.pdf

Download the latest version of Breeze TraceOnly from our website and extract it somewhere sensible. Please
make sure that you download the appropriate version of Breeze TraceOnly (32 or 64bit) for the machine you want
to run it on.

Breeze TraceOnly does not require any special permissions or licenses and can be run by any user authorized to
run the application under investigation.

Tracing an application

Breeze TraceOnly is run using the trace program. sh script available at the top-level directory of the installation.

To trace and profile an application you just type trace-program. sh -f <output directory> followed by your command
and arguments. For example:

$./trace-program.sh -f ~/trace output make all

If the output directory specified in the -f option exists and already contains trace data the script will display a
warning message and exit.

3.1 Command line options

The following section lists all the valid command-line options used by the trace programs. sh. All options to trace-
program. sh, must be specified before the command to be traced.

—bash-aliases=<alias file> -ab <alias file>

Supply a file of bash alias definitions. Breeze needs the definitions in order to trace aliases.

A suitable alias file can be generated by running the following command in bash before running this script:

$ alias > alias.txt

—post-trace=<post-trace-command>

-C <post-trace-command>

Execute a post-trace command after the program under trace has finished.

The command itself won’t be profiled, traced, monitored, or throttled. You can use this command to run a short
post-processing script, or to create a flag file, e.g., —post-trace=" touch /path/to/log/file”. If the command doesn’t
finish within 10 minutes, it will be killed.

—log=<filename>

-l <filename>

Record Breeze error messages in the specified file. If this option is not set, errors will be sent to stderr.
—output=<output directory>

-f <output directory>

The directory that tracing data will be written to, and which is used by Breeze TraceOnly for temporary storage.
This option is required.

—profile=<yes|no>

P

This option turns profiling on or off. When enabled Breeze collects many types of statistics on the operation of the
programs under trace. Profiling is on by default, but turning this off may speed up tracing and reduce the size of
the output. The exact set of statistics that are collected is controlled by environment variables described in
Profiling Options.

—packages

Runs a script to determine the packages that are installed on the system so that Breeze can determine where file
dependencies have come from. Off by default. This adds a large overhead before running your program and
should only be used if needed.

—relocate <output directory>

Directory where trace data will be copied after the run has finished. May be used to speed up execution time of
the program under trace by logging to local storage, and transferring the data to network storage afterwards.
—remote=<[bsub][,Isbatch][,Isrun][,qsub][,rsh][,sbatch][,srun][,ssh]>

—remote=<yes|no>-r

This option controls whether or not Breeze will follow an application to a new execution host.

The option can be specified as either a comma-separated list of supported job launching commands or one of yes
or no. The value yes is equivalent to listing all valid job launching commands and is the default value for this
option. Setting this option to no disables tracing of any child jobs.

The currently supported list of commands recognized by this option is bsub, batch, run, gsub, rush, run, ssh and
batch.

The new host must have an identical Breeze installation in the same directory as the first machine, and the trace
output directory must be located on a shared file system that is mounted in the same place on each machine.
—remote-job=yes

—remote-job

Track remote jobs. When one or more remote child jobs are launched from a top-level command/script then the
top-level job waits for all the remote jobs to complete. This option is off by default.

—shell=<shell path>

-s <shell path>

Path to your shell. This is used in tracing interactive sessions executed using su, ssh, and similar programs.
—stat=<yes|no>

-S

By default calls in the stat family (stat, fstat, and Istat) are not tracked and profiled. Turning this on may slow down
tracing and increase the size of the output.

—tcsh

-t

Run the command to be traced in a tcsh shell

—tcsh-aliases=<alias file>

-at <alias file>

Supply a file of tcsh or csh alias definitions. Breeze needs the definitions in order to trace aliases.

A suitable alias file can be generated by running the following command in cash or cash before running this script:
$ alias > alias.txt

—trace=<all-iolyes|no>

This option turns to trace on or off. Tracing is on by default.

The value all-io enables complete I/O tracing. With —trace=all-io, Breeze TraceOnly collects data on all reads,
writes, and seeks in addition to the standard tracing data. Whereas in the default tracking mode (—trace=yes),
only the first read, write and seek operation for each file is recorded. N.B. Using —trace=all-io option may
considerably slow down tracing and may increase the size of the output significantly — enabling profiling (on by
default) will give most of the required information with a lower overhead.

—variant=<mpich|mvapich|ompi>

This option selects the Breeze variant, which enables additional tracing functionality.
Currently supported values enable MPI I/O tracing for MPICH

(—variant=mpich), MVAPICH (—variant=mvapich) and OpenMPI

(—variant=ompi) applications.

3.2 Profiling Options

The exact set of statistics that are collected is controlled by environment variables. These environment variables
are summarised below.

BREEZE_PROFILE_BUCKETS

A comma-separated list of buckets.

Breeze TraceOnly aggregates file system statistics over specified subsets of the file system, which we refer to as
buckets.

A bucket may be any file or directory. If a bucket name contains a comma it must be escaped with a single
backslash \ character.

Defaults to all top-level directories in your file system and all active mount points.
BREEZE_PROFILE_BUCKET_STATS

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly collects the following statistics.

First, counts the number of calls to functions that use the file system. These functions are aggregated into the
following groups:

accept accept

access access, chdir, reading, real path, stat, ...
connect connect

create creat, open (if the file is created), tmpfile, mkdir, ...
delete remove, rmdir, unlink, ...

change glob chmod, link, rename, ...

glob glob, glob64

open open, opendir, ...

read fgets, fried, map, read, reader, recv, scanf, ...
seek sleek, seek, rewind, ...

write error, write, print, puts, send, warn, write, ...

Second, counts of the number of bytes read and written and the seek distance.

Each of these statistics is aggregated for each of the file system buckets configured by
BREEZE_PROFILE_BUCKETS (see above).

Defaults to “1” for on.

BREEZE_PROFILE_TIME_INTERVAL

An integer value that specifies how often statistics are reported.

By default, time intervals are assumed to be given in milliseconds, but you can explicitly use the unit “us” for
microseconds, “ms” for milliseconds, or “s” for seconds.

Defaults to “1000ms” (1 second).

BREEZE_PROFILE_NETWORK_STATS

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly collects counts of calls to functions that use the network. These functions are
aggregated into the following groups:

accept accept

bind bind

connect listen connect

listen listen

read read, recy, ...
write write, send, ...

These statistics are aggregated by each remote address accessed.

Defaults to “1” for on.

BREEZE_PROFILE_BUCKET_LATENCY

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly measures the time taken by function calls that use the file system.
These functions are aggregated into the groups described under BREEZE_PROFILE_BUCKET_STATS above
(accept, access, connect, change, glob, open, read, write).

Breeze collects maximum and minimum latencies and counts of calls that fall into each of the latency range
configured by

BREEZE_PROFILE_TIME_RANGES (see below), for each of the file system buckets configured by
BREEZE_PROFILE_BUCKETS.

Defaults to “1” for on.

BREEZE_PROFILE_NETWORK_LATENCY

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly measures the time taken by function calls that use the network.

These functions are aggregated into the groups described under BREEZE_PROFILE_NETWORKS_STATS above
(accept, bind, connect, listen, read, write).

Breeze collects maximum and minimum latencies and counts of calls that fall into each of the latency range
configured by

BREEZE PROFILE_TIME_ RANGES (see below), for each remote address, accessed.

Defaults to “1” for on.

BREEZE_PROFILE_TIME_RANGES

A comma-separated list of time interval boundaries.

When BREEZE_PROFILE_BUCKET_LATENCY or BREEZE_PROFILE_NETWORK_LATENCY is turned on,
Breeze aggregates counts of calls that fall into a set of time ranges (count of calls taking less than 1us, count of
calls taking 1-10us, ...).

Each time interval boundary must be specified as an integer value. If not specified the interval is assumed to be
given in milliseconds, but you can explicitly use the unit “us” for microseconds, “ms” for milliseconds, or “s” for
seconds.

For example, if you set:

BREEZE_PROFILE_TIME_RANGES=1us,1ms,1s

Then there are four ranges defined: <1us, 1us-1ms, 1ms-1s, and >1s.

Breeze TraceOnly will accept up to 15 values for this setting (hence up to 16 ranges).

Defaults to 1us,10us,100us,1ms,10ms,100ms,1s,10s,100s,1000s.

BREEZE_PROFILE_FAILED_IO

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly collects counts of function calls that failed.

These functions are aggregated into the groups described above (accept, access, bind, connect, change, glob,
listen, open, read, seek, write).

Each of these statistics is aggregated for each of the file system buckets configured by
BREEZE_PROFILE_BUCKETS (see

above), and for each remote address (in the case of network functions).

The failures are further aggregated by error number (errno).

Defaults to “1” for on.

BREEZE_PROFILE_FS_TRAWL

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly identifies cases when a program “trawls” the file system, testing many non-
existent file system paths in succession.

File system trawls can happen when the environment is poorly configured, for example, if the PATH has many
elements, and so programs have to search many places to find the files that they need. On distributed file systems
this can cause serious performance degradation.

Breeze defines a “trawl” as being an uninterrupted sequence of BREEZE_PROFILE_TRAWL_LENGTH (see
below) or more failed calls to the same function. The trawl is ended either by a successful call of that function or
by a call to a different function.

Breeze records the number of failed calls in the trawl, the name of the file associated with the final failed call, and
the time taken by the whole sequence of failed calls.

Defaults to “1” for on.

BREEZE_PROFILE_TRAWL_LENGTH

An integer value that specifies the minimum number of failed calls that Breeze considers to be a “trawl”. See
BREEZE_PROFILE_FS TRAWL

above.

Defaults to “4”.

BREEZE_PROFILE_RESOURCE_USAGE

Boolean, “1” for on, “0” for off.

When set to “1” Breeze reports the memory and CPU used by the program being profiled.

Breeze records the “total program size” (reserved virtual memory) and the “resident set size” (mapped memory) as

reported by /proc/[pid])/state. See “man proc(5)” for details.

Breeze also records the “user CPU time” and the “system CPU time” as a number of microseconds since the last
measurement.

It also records “voluntary context switches” and “involuntary context switches”. The values represent the delta to
the last measurement.

Defaults to “1” for on.

BREEZE_PROFILE_SYMLINK_COUNT

Boolean, “1” for on, “0” for off.

When set to “1” Breeze TraceOnly counts the number of symbolic links that have to be followed to resolve each
file system path used by the program under trace.

Breeze aggregates the count of file system operations by the length of the symlink chain, up to
BREEZE_PROFILE_SYMLINK_DEPTH (see below).

Defaults to “1” for on.

BREEZE_PROFILE_SYMLINK_DEPTH

An integer value that specifies the maximum length of a chain of symbolic links that Breeze TraceOnly will follow.
See BREEZE_PROFILE_SYMLINK_COUNT above.

Defaults to “5”.

3.3 Tracing applications on remote hosts

Breeze TraceOnly currently supports tracing applications on remote hosts using bsub, batch, run, gsub, rsh,
batch, run, and ssh.

The initial trace program. the sh script can be submitted to supported job schedulers such as sub or sub directly
as long as the Breeze TraceOnly installation is available via the same path on all possible remote host nodes.

In addition, if the program under trace runs a command on a new execution host via one of the supported
commands, Breeze

Tracey will attempt to re-write the command so that this task will also be traced. The output directory used for the
command on the remote host will be created under the output directory specified by the initial -f option, which
must therefore be available on all possible remote host nodes, and named:

<output directory>/remote trace-<hostname>-<PID>

Additionally, if the command was submitted as part of a job array the array index of the job under trace will be
appended giving a full output directory specification of <output directory>/remote trace-<hostname>-<PID>-<array
index>

3.4 Limitations

To trace a compound command such as command1 && command2 or a pipeline such as commandi | command2,
you must quote the command in order to prevent the shell from interpreting commandi as an argument to trace-
program. sh and piping its output into command2. For example:

$./trace-program.sh -f <output directory> “command1 | command2”

The other option is to wrap the entire command in a shell. For example: $./trace-program.sh -f <output directory>;
sh -c\ cd /apps; ./io_command | command2

It is important to note that Breeze TraceOnly will not automatically detect compound commands when re-writing
job submissions to remote hosts.

Alternatively, you can source trace-program.sh, execute the commands you want to trace and exit the shell:

$. ./trace-program.sh -f <output directory>

$ cd /apps

$./io_command | command2

$ exit

3.5 Tracing memory-mapped files

When tracing applications that map files into memory with mmap, Breeze traces the initial map operation if it is
backed by a file.

Any subsequent operations on the memory area itself are not traced. For example, when an application calls a
map, Breeze will trace the read/write operation for the file in question. If the application would then read/write into
the memory area, Breeze will not trace the memory |/O operations.

If an application calls a map with a MAP_ANONYMOUS flag (i.e., the mapping is not backed by any file), Breeze
will not trace the map operation. Breeze also doesn’t trace munmap operation, which deletes an existing mapping.

Removing confidential information from the trace output

It is possible that while tracing an application Breeze TraceOnly may have captured information you do not want to
share with the team that will analyze the trace output such as confidential file names.

By default Breeze, TraceOnly creates binary files as this is more space-efficient, however, it is possible to convert
this binary output into plain text using the decode-trace. sh script which can be found in the top-level directory of
the installation.

The script takes two parameters: $./decode-trace.sh <input directory/decoded/ [output directory] If the output
directory is not defined, the script will place the decoded trace in <input directory/decoded/

The <input directory> should be a Breeze TraceOnly output directory. This will either be the directory passed as
the -f option to a trace program. sh command or a trace directory created as the result of running a command on a
remote host (as described in section Tracing applications on remote hosts above).

All strings, names, and variables in the trace are listed in the file called strings at the top level of the decoded trace
directory structure. This file can be edited with any plain text file editor which allows the user to change any
confidential values.

Once all confidential data has been updated, the plain text version of the trace can be sent to the team that will
analyze the trace in place of the original binary output.

Documents / Resources

=breeze
““““ breeze HPC Tool Used to Solve Deployment [pdf] User Manual
HPC Tool Used to Solve Deployment
References

o @ decode-trace.sh

« © trace-program.sh
« @ Altair One

Manuals+,

https://manuals.plus/m/d64984916a410a36b2c8aedaa15b899fc2dbd7547ded5bee4fe3246410f2ab0e
https://manuals.plus/m/d64984916a410a36b2c8aedaa15b899fc2dbd7547ded5bee4fe3246410f2ab0e_optim.pdf
http://decode-trace.sh
http://trace-program.sh
https://www.ellexus.com/downloads/
https://manuals.plus/

	breeze HPC Tool Used to Solve Deployment User Manual
	Introduction
	Installation
	Tracing an application
	Removing confidential information from the trace output
	Documents / Resources
	References

