

BDE-RFM208P-2.4 Multi-Band Wireless Module with PA User Guide

Home » BDE » BDE-RFM208P-2.4 Multi-Band Wireless Module with PA User Guide 🖫

BDE-RFM208P-2.4 Multi-Band Wireless Module with PA

Contents

- 1 Introduction
- 2 Get Ready
- 3 Build Your First Application
 - 3.1 Software Development Kit (SDK) installation
 - 3.2 Run an example/demo code
- **4 Other Resources**
- **5 Revision History**
- 6 More Questions:
- 7 Documents / Resources
- **8 Related Posts**

Introduction

This user guide is for BDE-RFM208P-2.4, a Wireless Module based on TI CC1352R. It is a quick start guide for how to connect the module with the evaluation board BDE-EVB07 or with the TI launchpad, and how to build the first application. It also shows a demo for how BDERFM208P-2.4 receives a data packet that is sent from another BDE-BFM208P-2.4.

Get Ready

The following tools are recommended to develop with BDE-RFM208P-2.4. Hardware tools:

- Two modules of BDE-RFM208P-2.4 (<u>BDE-RFM208P-2.4-BDE Technology Inc.</u> (<u>bdecomm.com</u>))
- Two BDE-ADP208 V1.0 (adaptor board)
- PC or Laptop
- Two BDE-EVB07 (<u>BDE-EVB07-BDE Technology Inc.</u> (<u>bdecomm.com</u>))
 or
- Two TI Launchpad (<u>LAUNCHXL-CC13X2R Evaluation board | Tl.com</u>)
- USB cable for power supply and debugging

Software tools:

- Terminal software such as CCS, IAR.
- CCS download
- Software Development Kit (SDK)

Build Your First Application

Once have the Hardware and Software tools in place, please following the following steps:

A. Connect the Hardware

If chose EVB07:

Use USB cable to connect EVB07 and PC or laptop. Plug BDE-RFM208P-2.4 with the adaptor board into the dev board and connect all the pins with Jumpers as the following picture shows.

If chose TI Launchpad:

The connection is as following.

Connection Designator	BDE-RFM208P-2.4	LaunchPad Pin
3V3 Power	VDD	3V3
Ground	GND	GND
RST	RST	RESET
TMS	TMS	TMS
TCK	TCK	TCK
TDO	DIO16	TDO
TDI	DIO17	TDI

Optional: TDO TDI RXD TXD

B. Build the Application

· Download and install the CCS and SDK

From the above links, follow the instructions in the following steps to download and install the CCS and SDK.

CCS Installation

1. Click on this option

2. Select an option to download CCS

Download options

3. Unzip the package to a local disc

4. Click the setup of CCS

5. Click "Next"

6. Select the default option

7. Click "Next"

Please read the information carefully to determine if you need to take any action prior to continuing.

8. Select the Installation Directory

9. Select the default option

10. Select the component

11. Select the default option

12. Click "Next"

13. Click "Next"

14. Waiting for installation to complete

Software Development Kit (SDK) installation

1. Click on this option

2. Select an option you need to download SDK

3. Log in to your TI account, if you are a new user, register a TI account first

myTl account

myTI FAQ

Existing myTl user?

By logging in, you agree to TI's Terms of use & Privacy policy.

4. Select "civil" if your application is for civil use

5. Select "Yes" and submit

6. Download SDK

TI Request

You have been approved to receive this file. Click "Download" to proceed.

In a few moments, you will also receive an email with the link to this file.

Thank you, Texas Instruments

7. Installation

8. Click "Next"

9. Select the default option

10. Select the Installation directory

11. Click "Next"

12. Waiting for installation to complete

Run an example/demo code

1. For the first module, find the option named "Import CCS project..."

According to the following path to find the sending end project:
 ti\simplelink_cc13x2_26x2_sdk_5_10_00_48\examples\rtos\CC1352P_2_LAUNCHXL\ easylink\
 rfEasyLinkRx\tirtos\ccs

3. Right Click the project to build the receiving end project

4. Click this bug icon (means download and debugging)

5. Click on this option to start debugging

```
₩ workspace v16 - rfEasyLinkRx CC1352P 2 LAUNCHXL tirtos ccs/rfEasyLinkRx.c - Code C
File Edit View Project Tools Run Scripts Window Help

† Debug 

□

v 🏶 rfEasyLinkRx 🔨 1352P 2 LAUNCHXL tirtos ccs [Code Composer Studio - Device Debu

    P Texas Instruments XDS110 USB Debug Probe/Cortex M4 0 (Suspended - HW Break)

       = main() at rfEa LinkRx.c:211 0x000036F0
       c int00() at boot asm:254 0x00005068 ( c int00 does not contain frame inform

☐ rfEasyLinkRx.c 
☐
 211 {
 212
        /* Call driver init functions */
 213
        Board_initGeneral();
 214
 215
        /* Open LED pins */
 216
        ledPinHandle = PIN_open(&ledPinState, pinTable);
 217
        Assert_isTrue(ledPinHandle != NULL, NULL);
 218
 219
        /* Clear LED pins */
 220
        PIN_setOutputValue(ledPinHandle, CONFIG_PIN_GLED, 0);
 221
        PIN_setOutputValue(ledPinHandle, CONFIG_PIN_RLED, 0);
 222
 223
        rxTask_init(ledPinHandle);
 224
        /* Start BIOS */
 225
 226
        BIOS_start();
 227
```

6. Find the file which is named "rfEasyLinkRx.c" and the function which is named "rxDoneCb", and set a breakpoint at the line as the arrows shows

"rxDoneCb", and set a breakpoint at the line as the arrows shows

```
markspace v16 - rfEasyLinkRx CC1352P 2 LAUNCHXL tirtos ccs/rfEasyLinkRx.c - Code Comp
File Edit View Project Tools Run Scripts Window Help
B % 8 "
v 🏶 rfEasyLinkRx_CC1352P_2_LAUNCHXL_tirtos_ccs [Code Composer Studio - Device Debuggin
    Texas Instruments XDS110 USB Debug Probe/Cortex M4 0 (Running)
 rfEasyLinkRx.c 33
  Static Semaphore Handle rxDoneSem;
  91#endif
  93/***** Function definitions ***
  94#ifdef RFEASYLINKRX ASYNC
  95 void rxDoneCb(EasyLink_RxPacket * rxPacket, EasyLink_Status status)
  96 {
  97
        if (status == EasyLink_Status_Success)
  98
            /* Toggle RLED to indicate RX */
            PIN_setOutputValue(pinHandle, CONFIG_PIN_RLED,!PIN_getOutputVa
2100
 101
        else if(status == EasyLink_Status_Aborted)
 10
 104
            /* Toggle GLED to indicate command aborted */
 105
            PIN_setOutputValue(pinHandle, CONFIG_PIN_GLED,!PIN_getOutputVal
 106
 107
        else
 108
        {
```

7. For another module, according to the following path to find the sending end project: ti\simplelink_cc13x2_26x2_sdk_5_10_00_48\examples\rtos\ CC1352P_2_LAUNCHXL \ easylink\ rfEasyLinkTx\tirtos\ccs

8. Right Click the project to build the sending end project

9. Click this bug icon (means download and debugging)

10. Click on this option to start debugging

**workspace_v17 - rfEasyLinkTx_CC1352P_2_LAUNCHXL_tirtos_ccs/rfEasyLin File Edit View Project Tools Run Scripts Window Help

```
Debug ≈

rfEasyLinkTx_CC1352P_2 LAUNCHXL_tirtos_ccs [Code Composer Studio

reas Instruments XDS1 0 USB Debug Probe/Cortex_M4_0 (Suspend main() at rfEasyLinkTx.c.250 0x000036CC

c_int00() at boot.asm:254 0x000050A4 (c_int00 does not contain
```

```
☐ rfEasyLinkTx.c 
☐
250 {
        /* Call driver init functions. */
251
252
        Board initGeneral();
253
        /* Open LED pins */
254
255
        pinHandle = PIN open(&pinState, pinTable);
256
        Assert_isTrue(pinHandle != NULL, NULL);
257
        /* Clear LED pins */
258
        PIN setOutputValue(pinHandle, CONFIG PIN GLED, 0);
259
        PIN_setOutputValue(pinHandle, CONFIG_PIN_RLED, 0);
260
261
262
        txTask_init(pinHandle);
263
        /* Start BIOS */
264
265
        BIOS_start();
```

11. You can see the lights flashing (means sending a data uninterruptedly)

12. The program stops at the breakpoint

```
₩orkspace v16 - rfEasyLinkRx_CC1352P_2_LAUNCHXL_tirtos_ccs/rfEasyLinkRx.c - Code Compose

File Edit View Project Tools Run Scripts Window Help

‡ Debug 

□

v 🌼 rfEasyLinkRx CC1352P 2 LAUNCHXL tirtos ccs [Code Composer Studio - Device Debuggin 🔺

    P Texas Instruments XDS110 USB Debug Probe/Cortex M4 0 (Suspended - HW Breakpoint)

       = rxDoneCb(struct <unnamed> *, int)() at rfEasyLinkRx.c:100 0x00003B8E
<

☑ rfEasyLinkRx.c 
☒

  90 static Semaphore namede rxDoneSem;
  91#endif
  92
  93/**** Function definitions *****/
  94#ifdef RFEASYLINKRX_ASYNC
  95 void rxDoneCb(EasyLink RxPacket * rxPacket, EasyLink Status status)
  96{
        if (status == EasyLink_Status_Success)
  97
  98
        {
             /* Toggle RLED to indicate RX */
100
            PIN_setOutputValue(pinHandle, CONFIG_PIN_RLED,!PIN_getOutputValue)
        else if(status == EasyLink Status Aborted)
 103
 104
            /* Toggle GLED to indicate command aborted */
 105
            PIN_setOutputValue(pinHandle, CONFIG_PIN_GLED,!PIN_getOutputValue(
 106
 107
        el
 108
               Toggle GLED and RLED to indicate error */
 109

■ Console 

※

rfEasyLinkRx CC1352P 2 LAUNCHXL tirtos ccs
Cortex M4 0: GEL Output: Memory Map Initialization Complete.
```

By far you should've built your first application successfully.

For further development, please check out the <u>CC1352P-2.4 data sheet, product information and support | Tl.com</u> page and download the User guide (<u>https://www.ti.com/lit/pdf/swcu185</u>)

Other Resources

Mac OS Installer for SimpleLink CC13X2 26X2 SDK

Linux Installer for SimpleLink CC13X2 26X2 SDK

Mac OS Installer for Code Composer Studio IDE

<u>Linux Installer for Code Composer Studio IDE</u>

CC1352P SimpleLink™ High-Performance Multi-Band Wireless MCU With Integrated Power Amplifier

Windows Installer for SmartRF Flash Programmer 2

Revision History

Revision	Date	Description
V1.0	15-Feb-2020	Initial Released
V2.0	14-Apr-2021	Changed template

More Questions:

Please search existing answers on TI E2E support forums
Contact your local TI sales representative.
Or
Contact BDE Technology, Inc.

China:

B2-403, 162 Science Ave, Huangpu District, Guangzhou, 510663 Tel: +86-020-28065335

Website: http://www.bdecomm.com/cn/ Email: shu@bdecomm.com/cn/

USA:

67 E Madison St, #1603A, Chicago, IL 60603 Tel: +1-312-379-9589

Website: http://www.bdecomm.com/ Email: info@bdecomm.com/

Documents / Resources

BDE BDE-RFM208P-2.4 Multi-Band Wireless Module with PA [pdf] User Guide BDE-RFM208P-2.4, Multi-Band Wireless Module with PA

Manuals+,