

Manuals+

[Q & A](#) | [Deep Search](#) | [Upload](#)

[manuals.plus](#) /

› [Dwyer](#) /

› [Dwyer 400-23-GAGE Air Velocity Meter Instruction Manual](#)

Dwyer 400-23-GAGE

Dwyer 400-23-GAGE Air Velocity Meter Instruction Manual

Model: 400-23-GAGE

INTRODUCTION

This manual provides essential instructions for the proper setup, operation, and maintenance of your Dwyer 400-23-GAGE Air Velocity Meter. Please read this manual thoroughly before using the device to ensure accurate measurements and safe operation. Retain this manual for future reference.

PRODUCT OVERVIEW

The Dwyer 400-23-GAGE is a precision instrument designed for measuring air velocity. It typically includes a manometer, pitot tube, tubing, and necessary accessories for field use. This device is suitable for various industrial and scientific applications requiring accurate airflow measurement.

Figure 1: Dwyer 400-23-GAGE Air Velocity Meter kit. This image displays the complete kit, including the inclined manometer, a pitot tube, connecting tubing, and a protective carrying case. Also visible are small bottles, likely containing manometer fluid, and instruction sheets.

SETUP

- Unpacking:** Carefully remove all components from the packaging. Verify that all items listed in the packing list are present and undamaged.
- Manometer Fluid Filling:** If the manometer is not pre-filled, carefully add the specified manometer fluid (typically included) to the reservoir until it reaches the indicated zero mark. Refer to the specific instructions on the manometer itself for precise filling procedures. Avoid overfilling or introducing air bubbles.
- Tubing Connection:** Connect one end of the flexible tubing to the high-pressure port of the manometer and the other end to the total pressure port of the pitot tube. Connect a second piece of tubing from the low-pressure port of the manometer to the static pressure port of the pitot tube. Ensure all connections are secure and airtight.
- Pitot Tube Placement:** Position the pitot tube in the airflow stream at the desired measurement point. Ensure the tip of the pitot tube is facing directly into the airflow for accurate readings.
- Leveling the Manometer:** Place the manometer on a stable, level surface or mount it securely. Use the integrated leveling bubble (if present) or a separate level to ensure the manometer is perfectly horizontal. This is critical for accurate inclined manometer readings.

OPERATING INSTRUCTIONS

- Zero Adjustment:** Before taking any measurements, ensure the manometer fluid level is at the zero mark when no pressure is applied. Adjust the zeroing knob if necessary.
- Taking Readings:** With the pitot tube correctly positioned in the airflow, observe the fluid level in the manometer. The difference in fluid height indicates the differential pressure.
- Velocity Calculation:** Use the provided air velocity calculation chart or formula (typically printed on the manometer or in accompanying documentation) to convert the differential pressure reading (in inches of water) into air velocity (e.g., feet per minute or meters per second). This calculation often requires knowing the air density, which can vary with temperature and atmospheric pressure.
- Multiple Readings:** For improved accuracy, take several readings at different points within the airflow duct or area and average them.
- Environmental Considerations:** Ensure the operating environment is within the specified temperature and humidity ranges for the instrument to maintain accuracy.

MAINTENANCE

- Fluid Level Check:** Regularly check the manometer fluid level and replenish if necessary. Use only the manufacturer-specified fluid.
- Cleaning:** Keep the manometer and pitot tube clean. Use a soft, damp cloth for the exterior. Ensure the pitot tube openings are free from obstructions.
- Tubing Inspection:** Periodically inspect the connecting tubing for cracks, kinks, or leaks. Replace damaged tubing immediately to prevent inaccurate readings.
- Storage:** When not in use, store the instrument in its protective carrying case in a clean, dry environment, away from extreme temperatures and direct sunlight. Ensure the manometer fluid is secured to prevent spillage.
- Calibration:** For critical applications, periodic calibration by a qualified service center is recommended to maintain measurement accuracy.

TROUBLESHOOTING

- **No Reading or Erratic Readings:**

- Check for kinks or blockages in the tubing.
- Ensure tubing connections are secure and airtight.
- Verify the pitot tube is correctly positioned in the airflow.
- Check manometer fluid level and for air bubbles.
- Ensure the manometer is level.

- **Inaccurate Readings:**

- Confirm the manometer is properly zeroed.
- Verify the correct air density is used in velocity calculations.
- Check for any physical damage to the pitot tube or manometer.
- Consider professional calibration if accuracy issues persist.

SPECIFICATIONS

Model	400-23-GAGE
Brand	Dwyer
Manufacturer	Dwyer
Package Dimensions	13 x 3 x 3 inches
Package Weight	17.4 Pounds
ASIN	B077NJWHYB

Note: Specific measurement ranges and accuracy details are typically found on the device itself or in supplementary documentation.

© 2023 Dwyer Instruments, Inc. All rights reserved.

For further assistance, please refer to the official Dwyer website or contact customer support.