
Home » ARDUINO » ARDUINO IDE Set Up for DCC Controller Instructions

ARDUINO IDE Set Up for DCC Controller

ARDUINO IDE Set Up for DCC Controller Instructions

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/arduino
https://manuals.plus/arduino/ide-set-up-for-dcc-controller-manual.pdf

Contents
1 Arduino IDE set-up for DCC controller

1.1 Step 1. IDE environment set-up. Load the ESP boards.
1.2 Step 2. IDE environment set-up. Load ESP8266 Sketch Data Upload add-in.
1.3 Step 3. Download libraries and manually instal.
1.4 Step 4. Instal a couple more libraries using Arduino Library Manager.
1.5 Step 5. Download the ESP_DCC_Controller project from GitHub and open in
IDE.
1.6 Step 6. Set your requirements in Global. h
1.7 Step 7. Compile and upload to the board.

2 Documents / Resources
2.1 References

3 Related Posts

Arduino IDE set-up for DCC controller

Step 1. IDE environment set-up. Load the ESP boards.

When you first instal the Arduino IDE, it only supports ARM based boards. We need to add support for ESP based
boards. Navigate to File… Preferences

Type this line below into the Additional Boards Manager URLS box. Note there are underscores in it, no spaces.
 http://arduino.esp8266.com/stable/package_esp8266com_index.json,https://dl.espressif.com/dl/package_e
sp32_index.json
Also check the box that says Show Verbose during compilation. This gives us more information if something fails
during the compilation.

Note that the line above adds support for both esp8266 devices and the newer esp32. The two json strings are
separated by a comma.
Now select board version 2.7.4 from boards manager

http://arduino.esp8266.com/stable/package_esp8266com_index.json,https://dl.espressif.com/dl/package_esp32_index.json

Install version 2.7.4. This works. Version 3.0.0 and higher does not work for this project. Now, back in the Tools
menu, select the board you will be using. For this project it will be either a nodeMCU 1.0 or a WeMos D1R1

Here we select the WeMos D1R1. (changing this from the Nano)

Step 2. IDE environment set-up. Load ESP8266 Sketch Data Upload add-in.

We need to load this add-in to allow us to publish (put) HTML pages and other files on the ESP device. These live
in the data folder inside your project folder https://github.com/esp8266/arduino-esp8266fs-plugin/releases
Go to the URL above and download ESP8266FS-0.5.0.zip.
Create a Tools folder inside your Arduino folder. Unzip the contents of the zip file to this Tools folder. You should
end up with this;

And a new menu option will appear under Tools…

https://github.com/esp8266/arduino-esp8266fs-plugin/releases

If you invoke that menu option, the IDE will upload the contents of the data folder to the board. Ok so that’s the
IDE environment set up for general ESP8266 use, now we need to add some libraries to the Arduino/Libraries
folder for this specific project.

Step 3. Download libraries and manually instal.

We need to download these libraries from Github; https://github.com/me-no-dev/ESPAsyncTCP

https://github.com/me-no-dev/ESPAsyncTCP

Click on code, and then download zip. It will go to your downloads folder. Go into downloads, find the zip, open it
and drag the content folder “ESPAsyncTCP” to Arduino/libraries.
If the folder name ends with “-master”, then rename it to remove “-master” from the end.
i.e. from downloads

Open the .zip for ESPAsyncTCP-master, and drag ESPAsyncTCP-master folder from inside this to
Arduino/Libraries

Note: Arduino/libraries cannot use the .zip version, you need to unzip (drag) the desired folder over. We also need
https://github.com/fmalpartida/New-LiquidCrystal
Download the zip then drag its content to Arduino/libraries and remove -master ending.

And finally, we need ArduinoJson-5.13.5.zip from the link below
https://www.arduinolibraries.info/libraries/arduino-json

download and then drag the zip contents to Arduino/libraries

Step 4. Instal a couple more libraries using Arduino Library Manager.

We need two more libraries, and these come from the Arduino Library Manager which holds a selection of built-in
libraries. Go to Tools… Manage Libraries…

https://github.com/fmalpartida/New-LiquidCrystal
https://www.arduinolibraries.info/libraries/arduino-json

Use version 1.0.3 of Adafruit INA219. This works.

And also

Use version 2.1.0 of WebSockets from Markus Sattler, this is tested and working. I have not tested later versions.
OK so that’s all the libraries (aka references) that the IDE needs to compile this project.

Step 5. Download the ESP_DCC_Controller project from GitHub and open in IDE.

Go to GitHub and download https://github.com/computski/ESP_DCC_controller

Click on the green “Code” button, and download the zip. Then open the zip file and move its contents to the
Arduino folder. Rename the folder to remove the “-main” ending on the folder name. You should end up with a
folder ESP_ DCC_ controller in your Arduino folder. It will contain an .INO file, various .H and .CPP files and a data
folder.

Double click on the .INO file to open the project in the Arduino IDE.
Before we hit compile, we need to configure to your requirements…

Step 6. Set your requirements in Global. h

This project can support the nodeMCU or WeMo’s D1R1 and it also can support a number of different power
board (motor shield) options, plus it can support devices on an I2C bus such as current monitor, LCD display and
keypad. And finally it can also support a jogwheel (rotary encoder). The most basic build you can do is a WeMo’s
D1R1 and L298 motor shield.
Note the easiest way to disable an option is add a lowercase n in front of its name in the #define statement.
#define nNODEMCU_OPTION3

https://github.com/computski/ESP_DCC_controller

#define nBOARD_ESP12_SHIELD
#define WEMOS_D1R1_AND_L298_SHIELD
For example, above NODEMCU_OPTION3 has been disabled with n, the same for nBOARD_ESP12_SHIELD.
WEMOS_D1R1_AND_L298_SHIELD is the active option, and this will cause the compiler to use the configuration
for this as listed lower down.

To walk through this config:

#elif defined(WEMOS_D1R1_AND_L298_SHIELD)

/*Wemos D1-R1 stacked with L298 shield, note that the D1-R2 is a newer model with different pinouts*/
/*Cut the BRAKE jumpers on the L298 shield. These are not required and we don’t want them driven by the I2C
pins as it will corrupt the DCC signal.

The board has an Arduino form factor, the pins are as follows
D0 GPIO3 RX
D1 GPIO1 TX
D2 GPIO16 heartbeat and jogwheel pushbutton (active hi)
D3 GPIO5 DCC enable (pwm)
D4 GPIO4 Jog1
D5 GPIO14 DCC signal (dir)
D6 GPIO12 DCC signal (dir)
D7 GPIO13 DCC enable (pwm)
D8 GPIO0 SDA, with 12k pullup
D9 GPIO2 SCL, with 12k pullup
D10 GPIO15 Jog2
the above are notes for humans, lets you know which ESP GPIOs will perform which functions. Note that the
Arduino D1-D10 to GPIO mappings are different to the node MCU D1-D10 to GPIO mappings */

#define USE_ANALOG_MEASUREMENT
#define ANALOG_SCALING 3.9 //when using A and B in parallel (2.36 to match multimeter RMS)
We will use the AD on the ESP and not an external I2C current monitoring device such as the INA219 disable
this with n USE_ ANALOG_ MEASUREMENT if you do wish to use an INA219

#define PIN_HEARTBEAT 16 //and jogwheel pushbutton
#define DCC_PINS \
uint32 dcc_info[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO12, 12 , 0 }; \
uint32 enable_info[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO5, 5 , 0 }; \
uint32 dcc_infoA[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO14, 14 , 0 }; \
uint32 enable_infoA[4] = { PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO13,13 , 0 };
Defines which pins will drive the DCC signals, we have two channels, running in-phase so we can common them
together. A-channel is dcc_ info [] and B-channel is dcc_ info A []. These are defined as macros and the backslash
is a line-continuation marker.

#define PIN_SCL 2 //12k pullup
#define PIN_SDA 0 //12k pullup
#define PIN_JOG1 4
#define PIN_JOG2 15 //12k pulldown

Define the pins (GPIOs) which drive the I2C SCL/SDA and then also the jogwheel inputs 1 and 2

#define KEYPAD_ADDRESS 0x21 //pcf8574

Used for the optional 4 x 4 matrix keypad, which is scanned using a pcf8574 chip

//addr, en,rw,rs,d4,d5,d6,d7,backlight, polarity. we are using this as a 4 bit device //my display pinout is rs,rw,e,d0-
d7. only d<4-7> are used. <210> appears because bits <012> are //mapped as EN,RW,RS and we need to
reorder them per actual order on the hardware, 3 is mapped //to the backlight. <4-7> appear in that order on the
backpack and on the display.

#define BOOTUP_LCD LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); //YwRobot backpack

Used to define and configure the I2C backpack that drives the 1602 LCD display (optional), this is softconfigurable
and there are several backpacks available whose pin configurations vary.
#endif

Step 7. Compile and upload to the board.

Now you have configured the board combo you intend using, you can compile the project. If you don’t intend to
use the 4×4 matrix keypad, and LCD, no problem, leave in their definitions as the software expects to configure
them. The system will work fine over WiFi without them.
On the IDE, the tick symbol (verify) is actually “Compile”. Click this and you will see various messages appear
(provided you enabled Verbose compilation) as the system compiles the various libraries and links it all together. If
all works well, and it should if you followed all steps above exactly, then you should see a success message
appear. You are now ready to hit the right-arrow (upload) button, but before you do this, check you have selected
the correct COM port for the board under the Tools menu.
After a successful upload (use a good quality USB cable) you also need to invoke the Load ESP8266 Sketch
Data menu option under Tools. This will put the contents of the data folder onto the device (all the HTML pages).
You are done. Open the serial monitor, click the reset button and you should see the device boot and scan for I2C
devices. You can now connect to it over Wifi, and its ready to wire up to its power board (motor shield).

Documents / Resources

ARDUINO IDE Set Up for DCC Controller [pdf] Instructions
IDE Set Up for DCC Controller, IDE Set Up, Set Up for DCC Controller, DCC Controller IDE Set
Up, DCC Controller

References

 GitHub - computski/ESP_DCC_Controller: DCC controller based on nodeMCU ESP12-E device

 Releases · esp8266/arduino-esp8266fs-plugin · GitHub

 GitHub - fmalpartida/New-LiquidCrystal: Clone of the new liquid crystal library from:

https://bitbucket.org/fmalpartida/new-liquidcrystal

 GitHub - me-no-dev/ESPAsyncTCP: Async TCP Library for ESP8266

 ArduinoJson - Arduino Libraries

Manuals+,

https://manuals.plus/m/09e4b26d90557b5773fb629e1004614c9119cc12686a6c749361b6d23f81ecc9
https://manuals.plus/m/09e4b26d90557b5773fb629e1004614c9119cc12686a6c749361b6d23f81ecc9_optim.pdf
https://github.com/computski/ESP_DCC_controller
https://github.com/esp8266/arduino-esp8266fs-plugin/releases
https://github.com/fmalpartida/New-LiquidCrystal
https://github.com/me-no-dev/ESPAsyncTCP
https://www.arduinolibraries.info/libraries/arduino-json
https://manuals.plus/

	ARDUINO IDE Set Up for DCC Controller Instructions
	Arduino IDE set-up for DCC controller
	Step 1. IDE environment set-up. Load the ESP boards.
	Step 2. IDE environment set-up. Load ESP8266 Sketch Data Upload add-in.
	Step 3. Download libraries and manually instal.
	Step 4. Instal a couple more libraries using Arduino Library Manager.
	Step 5. Download the ESP_DCC_Controller project from GitHub and open in IDE.
	Step 6. Set your requirements in Global. h
	Step 7. Compile and upload to the board.

	Documents / Resources
	References

