

apogee INSTRUMENTS SP-422 Modbus Digital Output Silicon Cell Pyranometer Owner's Manual

Home » apogee INSTRUMENTS » apogee INSTRUMENTS SP-422 Modbus Digital Output Silicon Cell Pyranometer Owner's Manual [™]

Contents

- 1 apogee INSTRUMENTS SP-422 Modbus Digital Output Silicon Cell
- Pyranometer
- **2 CERTIFICATE OF COMPLIANCE**
- **3 INTRODUCTION**
- **4 SENSOR MODELS**
- **5 SPECIFICATIONS**
- **6 DEPLOYMENT AND INSTALLATION**
- **7 CABLE CONNECTORS**
- **8 OPERATION AND MEASUREMENT**
 - 8.1 Wiring
 - 8.2 Sensor Calibration
 - 8.3 Modbus Interface
 - 8.4 Overview
 - 8.5 Sensor addresses
 - 8.6 Register Index
 - 8.7 Register Format:
 - 8.8 Communication Parameters:
 - 8.9 Packet Framing:
 - 8.10 Example Packets:
- 9 MAINTENACE AND RECALIBRATION
- 10 TROUBLESHOOTING AND CUSTOMER SUPPORT
- 11 RETURN AND WARRANTY POLICY
 - 11.1 RETURN POLICY
 - **11.2 WARRANTY POLICY**
- 12 PRODUCTS BEYOND THE WARRANTY PERIOD
- 13 OTHER TERMS
- 14 Documents / Resources
- 15 Related Posts

apogee INSTRUMENTS SP-422 Modbus Digital Output Silicon Cell Pyranometer

CERTIFICATE OF COMPLIANCE

EU Declaration of Conformity

This declaration of conformity is issued under the sole responsibility of the manufacturer: Apogee Instruments, Inc. 721 W 1800 N Logan, Utah 84321 USA

for the following product(s):

Models: SQ-647

Type: Quantum Light Pollution Sensor

The object of the declaration described above is in conformity with the relevant Union harmonization legislation:

2014/30/EU Electromagnetic Compatibility (EMC) Directive

2011/65/EU Restriction of Hazardous Substances (RoHS 2) Directive 2015/863/EU Amending Annex II to Directive 2011/65/EU (RoHS 3)

Standards referenced during compliance assessment:

EN 61326-1:2013 Electrical equipment for measurement, control, and laboratory use – EMC requirements EN 50581:2012 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

Please be advised that based on the information available to us from our raw material suppliers, the products manufactured by us do not contain, as intentional additives, any of the restricted materials including lead (see note

below), mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyls (PBDE), bis (2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP). However, please note that articles containing greater than 0.1% lead concentration are RoHS 3 compliant using exemption 6c.

Further note that Apogee Instruments does not specifically run any analysis on our raw materials or end products for the presence of these substances, but we rely on the information provided to us by our material suppliers.

Signed for and on behalf of: Apogee Instruments, October 2021

Bruce Bugbee President Apogee Instruments, Inc.

INTRODUCTION

Radiation that drives photosynthesis is called photosynthetically active radiation (PAR) and is typically defined as total radiation across a range of 400 to 700 nm. PAR is almost universally quantified as photosynthetic photon flux density (PPFD) in units of micromoles per square meter per second (µmol m-2 s-1, equal to microEinsteins per square meter per second) summed from 400 to 700 nm (total number of photons from 400 to 700 nm). However, ultraviolet and far-red photons outside the defined PAR range of 400-700 nm can also contribute to photosynthesis and influence plant responses (e.g., flowering).

Sensors that measure PPFD are often called quantum sensors due to the quantized nature of radiation. A quantum refers to the minimum quantity of radiation, one photon, involved in physical interactions (e.g., absorption by photosynthetic pigments). In other words, one photon is a single quantum of radiation. Sensors that function like traditional quantum sensors but measure a wider range of wavelengths can be thought of as an 'extended range' quantum sensor.

Typical applications of traditional quantum sensors include incoming PPFD measurement over plant canopies in outdoor environments or in greenhouses and growth chambers and reflected or under-canopy (transmitted) PPFD measurement in the same environments. The Extended Range PFD Sensor detailed in this manual uses a detector that is sensitive to radiation up to about 1100 nm, well beyond the range of wavelengths that influence photosynthesis and plant responses. This means this particular sensor should only be used for photon flux density measurements under LEDs.

Apogee Instruments SQ-600 series Quantum Light Pollution Sensors consist of a cast acrylic diffuser (filter), photodiode, and signal processing circuitry mounted in an anodized aluminum housing, and a cable to connect the sensor to a measurement device. SQ-600 series sensors are designed for continuous photon flux density measurements in indoor environments under LEDs. The SQ-640 Quantum Light Pollution models output a voltage that is directly proportional to photon flux density. The SQ-647 sensors output a digital signal using SDI-12 communication protocol.

SENSOR MODELS

This manual covers the digital model SQ-647 SDI-12 Quantum Light Pollution Sensor (in bold below). Additional models are covered in their respective manuals.

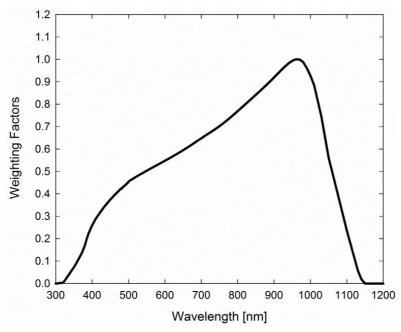
Model	Signal
SP-422	Modbus
SP-110	Self-powered
SP-230*	Self-powered
SP-212	0-2.5 V
SP-214	4-20 mA
SP-215	0-5 V
SP-420	USB
SP-421	SDI-12

A sensor's model number and serial number are located on the bottom of the sensor. If the manufacturing date of a specific sensor is required, please contact Apogee Instruments with the serial number of the sensor.

SPECIFICATIONS

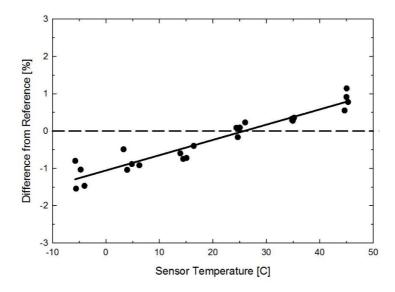
SP-422	
ISO 9060:2018	Class C (previously known as second class)

Input Voltage Requiremen t	5.5 to 24 V
Average Max Current Dra w	RS-232 37 mA; RS-485 quiescent 37 mA, active 42 mA
Calibration Uncertainty at 1000 W m-2	Less than 3 % (see Calibration Traceability below)
Measurement Repeatabili ty	Less than 1 %
Long-term Drift (Non-stability)	Less than 2 % per year
Non-linearity	Less than 1 % (up to 2000 W m-2)
Field of View	180°
Spectral Range	360 to 1120 nm (wavelengths where response is 10% of maximum; see Spectral R esponse below)
Directional (Cosine) Response	± 5 % at 75° zenith angle (see Cosine Response below)
Temperature Response	0.04 ± 0.04 % per C (see Temperature Response below)
Operating Environment	-40 to 70 C; 0 to 100 % relative humidity; can be submerged in water up to 30 m
Dimensions	30.5 diameter, 37 mm height

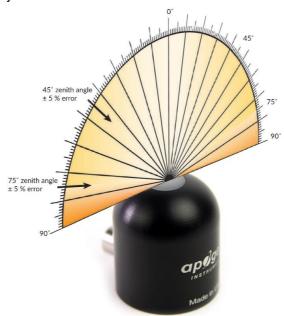

Mass (with 5 m of cable)	140 g
Cable	5 m of four conductor, shielded, twisted-pair wire; TPR jacket; pigtail lead wires; sta inless steel (316), M8 connector

Calibration Traceability

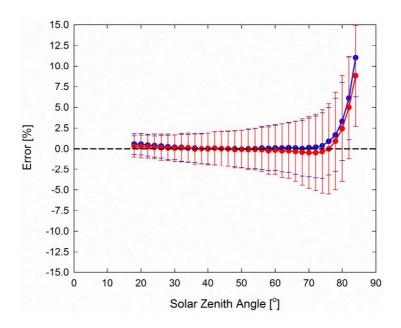
Apogee Instruments SQ-600 series quantum light pollution sensors are calibrated through side-by-side comparison to the mean of four transfer standard quantum light pollution sensors under a reference lamp. The transfer standard quantum light pollution sensors are recalibrated with a quartz halogen lamp traceable to the National Institute of Standards and Technology (NIST).


Spectral Response

Spectral response estimate of Apogee silicon-cell pyranometers. Spectral response was estimated by multiplying the spectral response of the photodiode, diffuser, and adhesive. Spectral response measurements of diffuser and adhesive were made with a spectrometer, and spectral response data for the photodiode were obtained from the manufacturer.


Temperature Response

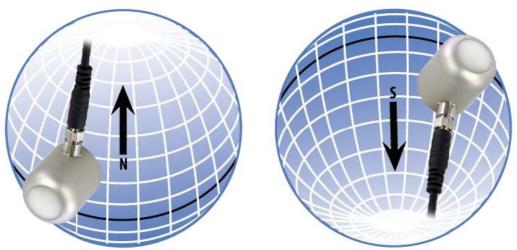
Mean temperature response of four Apogee silicon-cell pyranometers. Temperature response measurements were made at approximately 10 C intervals across a temperature range of approximately -10 to 50 C under sunlight. Each pyranometer had an internal thermistor to measure temperature. At each temperature set point, a reference blackbody pyranometer was used to measure solar intensity.



Cosine Response

Directional, or cosine, response is defined as the measurement error at a specific angle of radiation incidence. Error for Apogee SQ-600 series Quantum Light Pollution Sensor is approximately \pm 2 % and \pm 5 % at solar zenith angles of 45° and 75°, respectively.

Mean cosine response of eleven Apogee silicon-cell pyranometers (error bars represent two standard deviations above and below mean). Cosine response measurements were made during broadband outdoor radiometer calibrations (BORCAL) performed during two different years at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Cosine response was calculated as the relative difference of pyranometer sensitivity at each solar zenith angle to sensitivity at 45° solar zenith angle. The blue symbols are AM measurements, the red symbols are PM measurements.


DEPLOYMENT AND INSTALLATION

Mount the sensor to a solid surface with the nylon mounting screw provided. To accurately measure photon flux density incident on a horizontal surface, the sensor must be level. An Apogee Instruments model AL-100 leveling plate is recommended for this purpose. To facilitate mounting on a cross arm, an Apogee Instruments model AL-120 mounting bracket is recommended.

To minimize azimuth error, the sensor should be mounted with the cable pointing toward true north in the northern hemisphere or true south in the southern hemisphere. Azimuth error is typically less than 0.5 %, but it is easy to minimize by proper cable orientation.

Important: Only use the nylon screw provided when mounting to insulate the non-anodized threads of the aluminum sensor head from the base to help prevent galvanic corrosion. For extended submersion applications, more insulation may be necessary. Contact Apogee tech support for details.

In addition to orienting the cable to point toward the nearest pole, the sensor should also be mounted such that obstructions (e.g., weather station tripod/tower or other instrumentation) do not shade the sensor. Once mounted, the blue cap should be removed from the sensor. The blue cap can be used as a protective covering for the sensor when it is not in use.

CABLE CONNECTORS

Apogee started offering cable connectors on some bare-lead sensors in March 2018 to simplify the process of removing sensors from weather stations for calibration (the entire cable does not have to be removed from the station and shipped with the sensor).

The ruggedized M8 connectors are rated IP68, made of corrosion-resistant marine-grade stainless-steel, and designed for extended use in harsh environmental conditions.

Cable connectors are attached directly to the head.

Instructions

Pins and Wiring Colors: All Apogee connectors have six pins, but not all pins are used for every sensor. There may also be unused wire colors inside the cable. To simplify datalogger connection, we remove the unused pigtail lead colors at the datalogger end of the cable.

If a replacement cable is required, please contact Apogee directly to ensure ordering the proper pigtail configuration.

A reference notch inside the connector ensures proper alignment before tightening.

Alignment: When reconnecting a sensor, arrows on the connector jacket and an aligning notch ensure proper orientation.

When sending sensors in for calibration, only send the sensor head.

Disconnection for extended periods: When disconnecting the sensor for an extended period of time from a station, protect the remaining half of the connector still on the station from water and dirt with electrical tape or other method.

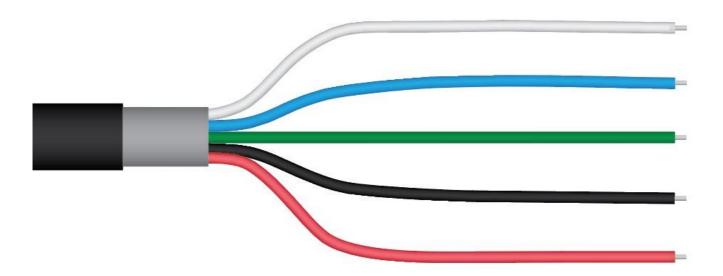
Tightening: Connectors are designed to be firmly finger-tightened only. There is an o-ring inside the connector that can be overly compressed if a wrench is used. Pay attention to thread alignment to avoid cross-threading. When fully tightened, 1-2 threads may still be visible.

Finger-tighten firmly

WARNING:

Do not tighten the connector by twisting the black cable or sensor head, only twist the metal connector (yellow arrows).

OPERATION AND MEASUREMENT


The SP-422 pyranometer has a Modbus output, where shortwave radiation is returned in digital format. Measurement of SP-422 pyranometers requires a measurement device with a Modbus interface that supports the Read Holding Registers (0x03) function.

Wiring

White: RS-232 RX / RS-485 Positive
Blue: RS-232 TX / RS-485 Negative

• Green: Select (Switch between RS-232 and RS-485) Black: Ground

• Red: Power 5.5 to 24 V

The Green wire should be connected to Ground to enable RS-485 communication, or it should be connected to 12 V power for RS-232 communication. Text for the White and Blue wires above refers to the port that the wires should be connected to.

Sensor Calibration

All Apogee Modbus pyranometers (model SP-422) has sensor-specific calibration coefficients determined during the custom calibration process. Coefficients are programmed into the sensors at the factory.

Modbus Interface

The following is a brief explanation of the Modbus protocol instructions used in Apogee SP-422 pyranometers. For questions on the implementation of this protocol, please refer to the official serial line implementation of the Modbus protocol: http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf (2006) and the general Modbus protocol specification: http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf (2012). Further information can be found at: http://www.modbus.org/specs.php

Overview

The primary idea of the Modbus interface is that each sensor exists at an address and appears as a table of

values. These values are called Registers. Each value in the table has an associated index, and that index is used to identify which value in the table is being accessed.

Sensor addresses

Each sensor is given an address from 1 to 247. Apogee sensors are shipped with a default address of 1. If using multiple sensors on the same Modbus line, the sensor's address will have to be changed by writing the Slave Address register.

Register Index

Each register in a sensor represents a value in the sensor, such as a measurement or a configuration parameter. Some registers can only be read, some registers can only be written, and some can be both read and written. Each register exists at a specified index in the table for the sensor. Often this index is called an address, which is a separate address than the sensor address, but can be easily confused with the sensor address. However, there are two different indexing schemes used for Modbus sensors, though translating between them is simple. One indexing scheme is called one-based numbering, where the first register is given the index of 1, and is thereby accessed by requesting access to regis er 1. The other indexing scheme is called zero-based numbering, where the first register is given the index 0, and is thereby accessed by requesting access to register 0. Apogee Sensors use zero-based numbering. However, if using the sensor in a system that uses one-based numbering, such as using a CR1000X logger, adding 1 to the zero-based address will produce the one-based address for the register.

Register Format:

According to the Modbus protocol specification, Holding Registers (the type registers Apogee sensors contain) are defined to be 16 bits wide. However, when making scientific measurements, it is desirable to obtain a more precise value than 16 bits allows. Thus, several Modbus implementations will use two 16-bit registers to act as one 32-bit register. Apogee Modbus sensors use this 32-bit implementation to provide measurement values as 32-bit IEEE 754 floating point numbers.

Apogee Modbus sensors also contain a redundant, duplicate set of registers that use 16-bit signed integers to represent values as decimal-shifted numbers. It is recommended to use the 32-bit values, if possible, as they contain more precise values.

Communication Parameters:

Apogee Sensors communicate using the Modbus RTU variant of the Modbus protocol. The default communication parameters are as follows:

Slave address: 1 Baudrate: 19200 Data bits: 8 Stop bits: 1 Parity: Even

Byte Order: Big-Endian (most significant byte sent first)

The baudrate and slave address are user configurable. Valid slave addresses are 1 to 247. Setting the slave address to 255 will trigger a reset event, and all settings will revert back to the original default, which is slave address 1 (i.e. if a sensor with a slave address of 5 is changed to 0, it will revert to slave address 1). (This will also reset factory-calibrated values and should NOT be done by the user unless otherwise instructed.)

Read only registers (function code 0x3).

Float Registers	
0	calibrated output watts
2 3	detector millivolts
4 5	Reserved for Future Use
6 7	device status (1 means device is busy, 0 otherwise)
8 9	firmware version
Integer Registers	
40	calibrated output watts (shifted one decimal point to the left)
41	detector millivolts (shifted one decimal point to the left)
42	Reserved for Future Use
43	device status (1 means device is busy, 0 otherwise)
44	firmware version (shifted one decimal point to the left)

Read/Write registers (function codes 0x3 and 0x10).

Writing to these registers has no effect on sensor settings until the user has written to the register 100. For example, to update the Slave Address, the user must first write the desired address to register 20. Then the user must also write to register 100 to save/store the new values.

Float Registers	
16 17	slave address
18 19	model number*
20 21	serial number*
22 23	baudrate (0 = 115200, 1 = 57600, 2 = 38400, 3 = 19200, 4 = 9600, any oth er number = 19200
24 25	parity (0 = none, 1 = odd, 2 = even)
26 27	number of stopbits
28 29	multiplier*
30 31	offset*

32 33	running average	
34 35	heater status	
Integer Registers		
48	slave address	
49	model number*	
50	serial number*	
51	baudrate (0 = 115200, 1 = 57600, 2 = 38400, 3 = 19200, 4 = 9600, any oth er number = 19200)	
52	parity (0 = none, 1 = odd, 2 = even)	
53	number of stopbits	
54	multiplier (shifted two decimal points to the left)*	
55	offset (shifted two decimal points to the left)*	
56	running average	

57	heater status
----	---------------

^{*}Registers marked with an asterisk (*) cannot be written to unless a specific procedure is followed. Contact Apogee Instruments to receive the procedure for writing these registers.MAINTENANCE AND RECALIBRATION

Packet Framing:

Apogee sensors use Modbus RTU packets and tend to adhere to the following pattern:

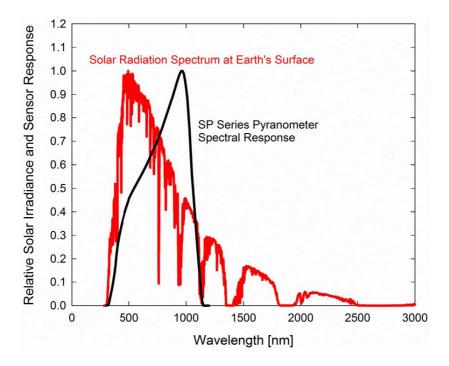
Slave Address (1 byte), Function Code (1 byte), Starting Address (2 bytes), Number of Registers (2 bytes), Data Length (1 byte, optional) Data (n bytes, optional)

Modbus RTU packets use the zero-based address when addressing registers.

For information on Modbus RTU framing, see the official documentation at http://www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf

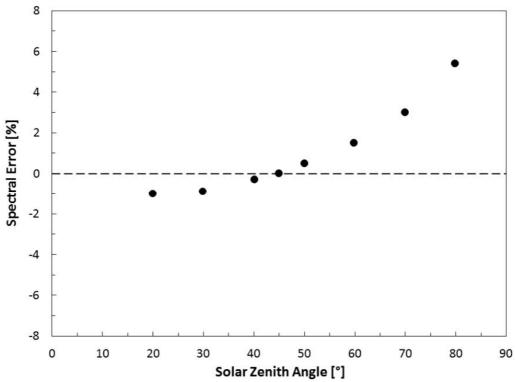
Example Packets:

An example of a data packet sent from the controller to the sensor using function code 0x3 reading register address 0. Each pair of square brackets indicates one byte.

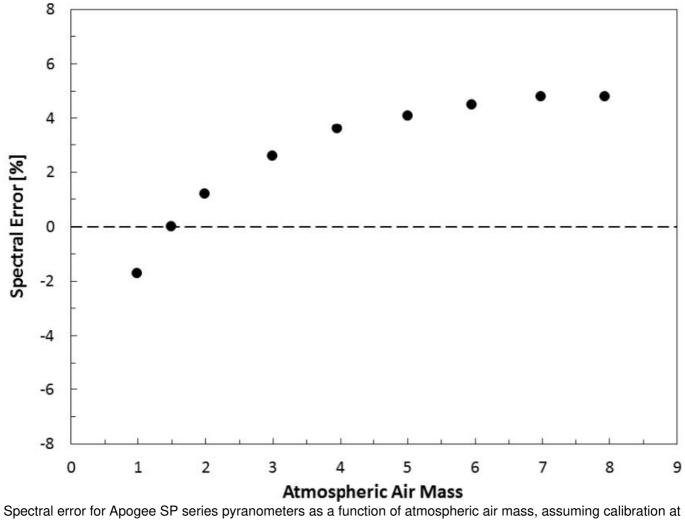

[Slave Address][Function][Starting Address High Byte][Starting Address Low Byte][No of Registers High Byte][No of Registers Low Byte][CRC High Byte][CRC Low Byte]
0x01 0x03 0x00 0x00 0x00 0x02 0xC4 0x0B

An example of a data packet sent from the controller to the sensor using function code 0x10 writing a 1 to register 26. Each pair of square brackets indicates one byte.

[Slave Address][Function][Starting Address High Byte][Starting Address Low Byte][No of Registers High Byte][No of Registers Low Byte][Byte Count][Data High Byte][Data Low Byte][Data High Byte][Data Low Byte][CRC High Byte][CRC Low Byte] 0x01 0x10 0x00 0x1A 0x00 0x02 0x04 0x3f 0x80 0x00 0x00 0x7f 0x20.


Spectral Errors for Measurements with Silicon-cell Pyranometers

Apogee SP series pyranometers are calibrated under electric lamps in a calibration laboratory. The calibration procedure simulates calibration under clear sky conditions at a solar zenith angle of approximately 45°. However, due to the limited spectral sensitivity of silicon-cell pyranometers compared to the solar radiation spectrum (see graph below), spectral errors occur when measurements are made in conditions that differ from conditions the sensor was calibrated under (e.g., the solar spectrum differs in clear sky and cloudy conditions, thus, measurements in cloudy conditions result in spectral error because sensors are calibrated in clear sky conditions).



Spectral response of Apogee SP series pyranometers compared to solar radiation spectrum at Earth's surface. Silicon-cell pyranometers, such as Apogee SP series, are only sensitive to the wavelength range of approximately 350-1100 nm, and are not equally sensitive to all wavelengths within this range. As a result, when the spectral content of solar radiation is significantly different than the spectrum that silicon-cell pyranometers were calibrated to, spectral errors result.

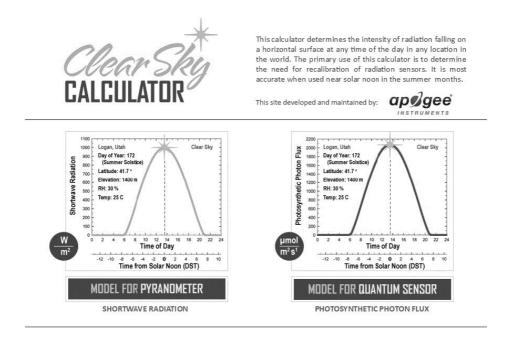
Silicon-cell pyranometers can still be used to measure shortwave radiation in conditions other than clear sky or from radiation sources other than incoming sunlight, but spectral errors occur when measuring radiation with silicon-cell pyranometers in these conditions. The graphs below show spectral error estimates for Apogee silicon-cell pyranometers at varying solar zenith angles and varying atmospheric air mass. The diffuser is optimized to minimize directional errors, thus the cosine response graph in the Specifications section shows the actual directional errors in practice (which includes contributions from the spectral shift that occurs as solar zenith angle and atmospheric air mass change with time of day and time of year). The table below provides spectral error estimates for shortwave radiation measurements from shortwave radiation sources other than clear sky solar radiation.

Spectral error for Apogee SP series pyranometers as a function of solar zenith angle, assuming calibration at a zenith angle of 45°.

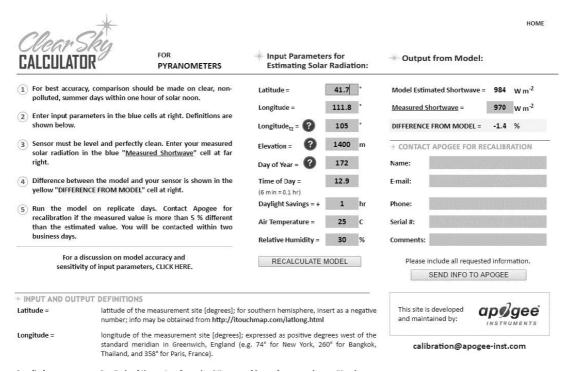
an air mass of 1.5.

Radiation Source (Error Calculated Relative to Sun, Clear Sky)	Error [%]
Sun (Clear Sky)	0.0
Sun (Cloudy Sky)	9.6
Reflected from Grass Canopy	14.6
Reflected from Deciduous Canopy	16.0
Reflected from Conifer Canopy	19.2
Reflected from Agricultural Soil	-12.1
Reflected from Forest Soil	-4.1
Reflected from Desert Soil	3.0
Reflected from Water	6.6
Reflected from Ice	0.3
Reflected from Snow	13.7

MAINTENACE AND RECALIBRATION


Blocking of the optical path between the target and detector can cause low readings. Occasionally, accumulated materials on the diffuser can block the optical path in three common ways:

- 1. Moisture or debris on the diffuser.
- 2. Dust during periods of low rainfall.
- 3. Salt deposit accumulation from evaporation of sea spray or sprinkler irrigation water.


Apogee Instruments upward-looking sensors have a domed diffuser and housing for improved self-cleaning from rainfall, but active cleaning may be necessary. Dust or organic deposits are best removed using water, or window cleaner, and a soft cloth or cotton swab. Salt deposits should be dissolved with vinegar and removed with a cloth or cotton swab. Salt deposits cannot be removed with solvents such as alcohol or acetone. Use only gentle pressure when cleaning the diffuser with a cotton swab or soft cloth to avoid scratching the outer surface. The solvent should be allowed to do the cleaning, not mechanical force. Never use abrasive material or cleaner on the

diffuser.

It is recommended that two-band radiometers be recalibrated every two years. See the Apogee webpage for details regarding return of sensors for recalibration (http://www.apogeeinstruments.com/tech-support-recalibration-repairs/).

Homepage of the Clear Sky Calculator. Two calculators are available: One for pyranometers (total shortwave radiation) and one for quantum sensors (photosynthetic photon flux density).

Clear Sky Calculator for pyranometers. Site data are input in blue cells in middle of page and an estimate of total shortwave radiation is returned on right-hand side of page.

TROUBLESHOOTING AND CUSTOMER SUPPORT

Independent Verification of Functionality

If the sensor does not communicate with the datalogger, use an ammeter to check the current drain. It should be near 37 mA when the sensor is powered. Any current drain significantly greater than approximately 37 mA indicates a problem with power supply to the sensors, wiring of the sensor, or sensor electronics.

Compatible Measurement Devices (Dataloggers/Controllers/Meters)

Any datalogger or meter with RS-232/RS-485 that can read/write float or integer values.

An example datalogger program for Campbell Scientific dataloggers can be found at https://www.apogeeinstruments.com/content/Pyranometer-Modbus.CR1.

Cable Length

All Apogee sensors use shielded cable to minimize electromagnetic interference. For best communication, the shield wire must be connected to an earth ground. This is particularly important when using the sensor with long lead lengths in electromagnetically noisy environments.

RS-232 Cable Length

If using an RS-232 serial interface, the cable length from the sensor to the controller should be kept short, no longer than 20 meters. For more information, see section 3.3.5 in this document: http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

RS-485 Cable Length

If using an RS-485 serial interface, longer cable lengths may be used. The trunk cable can be up to 1000 meters long. The length of cable from the sensor to a tap on the trunk should be short, no more than 20 meters. For more information, see section 3.4 in this document: http://www.modbus.org/docs/Modbus over serial line V1 02.pdf

Troubleshooting Tips

- Make sure to use the green wire to select between RS-232 and RS-485.
- Make sure that the sensor is wired correctly (refer to wiring diagram).
- Make sure the sensor is powered by a power supply with a sufficient output (e.g., 12 V).
- Make sure to use the appropriate kind of variable when reading Modbus registers. Use a float variable for float registers and an integer variable for integer registers.
- Make sure the baudrate, stop bits, parity, byte order, and protocols match between the control program and the sensor. Default values are:

o Baudrate: 19200

o Stop bits: 1 o Parity: Even

o Byte order: ABCD (Big-Endian/Most Significant Byte First)

o Protocol: RS-232 or RS-485

RETURN AND WARRANTY POLICY

RETURN POLICY

Apogee Instruments will accept returns within 30 days of purchase as long as the product is in new condition (to

be determined by Apogee). Returns are subject to a 10 % restocking fee.

WARRANTY POLICY

What is Covered

All products manufactured by Apogee Instruments are warranted to be free from defects in materials and craftsmanship for a period of four (4) years from the date of shipment from our factory. To be considered for warranty coverage an item must be evaluated by Apogee.

Products not manufactured by Apogee (spectroradiometers, chlorophyll content meters, EE08-SS probes) are covered for a period of one (1) year.

What is Not Covered

The customer is responsible for all costs associated with the removal, reinstallation, and shipping of suspected warranty items to our factory.

The warranty does not cover equipment that has been damaged due to the following conditions:

- 1. Improper installation or abuse.
- 2. Operation of the instrument outside of its specified operating range.
- 3. Natural occurrences such as lightning, fire, etc.
- 4. Unauthorized modification.
- 5. Improper or unauthorized repair.

Please note that nominal accuracy drift is normal over time. Routine recalibration of sensors/meters is considered part of proper maintenance and is not covered under warranty.

Who is Covered

This warranty covers the original purchaser of the product or other party who may own it during the warranty period.

What Apogee Will Do At no charge Apogee will:

- 1. Either repair or replace (at our discretion) the item under warranty.
- 2. Ship the item back to the customer by the carrier of our choice.

Different or expedited shipping methods will be at the customer's expense. How To Return An Item

- Please do not send any products back to Apogee Instruments until you have received a Return Merchandise Authorization (RMA) number from our technical support department by submitting an online RMA form at www.apogeeinstruments.com/tech-support-recalibration-repairs/. We will use your RMA number for tracking of the service item. Call (435) 245-8012 or email techsupport@apogeeinstruments.com with questions.
- 2. For warranty evaluations, send all RMA sensors and meters back in the following condition: Clean the sensor's exterior and cord. Do not modify the sensors or wires, including splicing, cutting wire leads, etc. If a connector has been attached to the cable end, please include the mating connector otherwise the sensor connector will be removed in order to complete the repair/recalibration. Note: When sending back sensors for routine

calibration that have Apogee's standard stainless-steel connectors, you only need to send the sensor with the 30 cm section of cable and one-half of the connector. We have mating connectors at our factory that can be used for calibrating the sensor.

- 3. Please write the RMA number on the outside of the shipping container.
- 4. Return the item with freight pre-paid and fully insured to our factory address shown below. We are not responsible for any costs associated with the transportation of products across international borders. Apogee Instruments, Inc.

721 West 1800 North Logan, UT 84321, USA

5. Upon receipt, Apogee Instruments will determine the cause of failure. If the product is found to be defective in terms of operation to the published specifications due to a failure of product materials or craftsmanship, Apogee Instruments will repair or replace the items free of charge. If it is determined that your product is not covered under warranty, you will be informed and given an estimated repair/replacement cost.

PRODUCTS BEYOND THE WARRANTY PERIOD

For issues with sensors beyond the warranty period, please contact Apogee at techsupport@apogeeinstruments.com to discuss repair or replacement options.

OTHER TERMS

The available remedy of defects under this warranty is for the repair or replacement of the original product, and Apogee Instruments is not responsible for any direct, indirect, incidental, or consequential damages, including but not limited to loss of income, loss of revenue, loss of profit, loss of data, loss of wages, loss of time, loss of sales, accruement of debts or expenses, injury to personal property, or injury to any person or any other type of damage or loss.

This limited warranty and any disputes arising out of or in connection with this limited warranty ("Disputes") shall be governed by the laws of the State of Utah, USA, excluding conflicts of law principles and excluding the Convention for the International Sale of Goods. The courts located in the State of Utah, USA, shall have exclusive jurisdiction over any Disputes.

This limited warranty gives you specific legal rights, and you may also have other rights, which vary from state to state and jurisdiction to jurisdiction, and which shall not be affected by this limited warranty. This warranty extends only to you and cannot by transferred or assigned. If any provision of this limited warranty is unlawful, void, or unenforceable, that provision shall be deemed severable and shall not affect any remaining provisions. In case of any inconsistency between the English and other versions of this limited warranty, the English version shall prevail.

This warranty cannot be changed, assumed, or amended by any other person or agreement

APOGEE INSTRUMENTS, INC. | 721 WEST 1800 NORTH, LOGAN, UTAH 84321, USA TEL: (435) 792-4700 | FAX: (435) 787-8268 | WEB: APOGEEINSTRUMENTS.COM Copyright © 2021 Apogee Instruments, Inc.

Documents / Resources

apogee INSTRUMENTS SP-422 Modbus Digital Output Silicon Cell Pyranometer [pdf]

Owner's Manual

SP-422, Modbus Digital Output Silicon Cell Pyranometer, SP-422 Modbus Digital Output Silicon Cell Pyranometer, Output Silicon Cell Pyranometer, Silicon Cell Pyranometer, Pyranometer, Pyranometer

Manuals+,