ANALOG DEVICES MAX96751 EVKIT Evaluation Board User Guide Home » Analog Devices » ANALOG DEVICES MAX96751 EVKIT Evaluation Board User Guide 12 #### **Contents** - 1 ANALOG DEVICES MAX96751 EVKIT Evaluation **Board** - **2 General Description** - 3 Required Equipment - 4 Troubleshooting - **5 Detailed Description of Hardware** - 6 MAX96751 Evaluation Kit - 7 Revision History - 8 Documents / Resources - 8.1 References - 9 Related Posts **ANALOG DEVICES MAX96751 EVKIT Evaluation Board** ### **Specifications** • Product Name: MAX96751 Evaluation Kit • Compatibility: HDMI 2.0 Serializer EV Kit • Forward Link Rates: 3Gbps or 6Gbps • Power Options: 12V DC Supply (Included), USB, PoC, Externally Powered • Interface: I2S Audio Interface Header for GPIO, I2C, UART, and SPI Signals • Software Compatibility: Windows 10-Compatible Software • Features: Configurable Power-Over-Coax (PoC), Line Fault Circuits, GMSL Channel Signal Integrity Tools · Assembly: Fully Assembled and Tested PCB Layout #### **Procedure** The MAX96751 COAX/STQ EV kit comes fully assembled and tested. ### Follow these steps to verify board operation: - 1. Step 1: Ensure all required equipment is available. - 2. Step 2: Connect the MAX96751 coax EV kit and MAX96752 coax EV kit as per the provided instructions. - 3. Step 3: Power up the system using the 12V DC supply or other power options. - 4. Step 4: Install the evaluation kit software on your computer using the provided installation files. - 5. Step 5: Use the graphical user interface program to interact with the evaluation kit. - 6. Step 6: Utilize the tools provided to characterize the GMSL channel signal integrity. ### **FAQ** ### Q: Can I use the MAX96751 Evaluation Kit without a Windows PC? A: No, the evaluation kit software is compatible with Windows operating systems only. Evaluates: MAX96751 ## **General Description** The MAX96751 evaluation kit (EV Kit) provides a proven design to evaluate the MAX96751 high-bandwidth gigabit multimedia serial-link (GMSL) serializer with spread spectrum and full-duplex control channel with the use of a standard FAKRA coaxial cable. The EV kit also includes Windows® 10 software to provide a simple graphical user interface (GUI) for exercising features of the device. For complete GMSL evaluation, order the MAX96751 coax EV kit and a companion deserializer board (MAX96752 coax EV kit referenced in this document). Note: In the following sections, serializer refers to MAX96751. Deserializer refers to MAX96752. Note: This document applies to both coax and HSD-STQ evaluation kits, coax EV kit is referenced in this document. #### **Benefits and Features** HDMI 2.0 Serializer EV Kit to Drive GMSL-2 Serial Data Outputs (50Ω FAKRA Coax or 100Ω HSD-STQ Connectors) 3Gbps or 6Gbps Forward Link Rates for System and Power Flexibility - Configurable Power-Over-Coax (PoC) and Line Fault Circuits - I2S Audio Interface - · Header for GPIO, I2C, UART and SPI Signals - · Windows 10-Compatible Software - Tools to Characterize GMSL Channel Signal Integrity - 12V DC Supply (Included), USB, PoC or Externally Powered - · Proven PCB Layout - Fully Assembled and Tested Figure 1. Serializer Evaluation Board Block Diagram Ordering Information appears at end of data sheet. Windows and Windows 10 are registered trademarks and registered service marks of Microsoft Corporation. # MAX96751 Evaluation Kit Quick Start ### **Required Equipment** To get started evaluating there are a few installation and setup requirements. This procedure walks you through the necessary steps for basic bring-up of the deserial-izer EV kit. Figure 2 shows a typical application using an HDMI Serializer with the oLDI deserializer. Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items from the EV Kit software. Text in bold and underlined refers to items from the Windows operating system. ### **Required Equipment** - MAX96751 coax EV kit - MAX96752 coax EV kit - FAKRA Coax Cable - HDMI source, such as laptop computer or HDMI signal generator - · oLDI Display and oLDI Adapter Board - · Windows 10 PC with a spare USB port - 12V DC, 500mA power supply Figure 2. Typical GMSL System Evaluation Setup Block Diagram #### **Procedure** The MAX96751 COAX/STQ EV kit is shipped with the PCB fully assembled and tested. Follow the steps below to verify board operation: 1. Download and install latest GMSL2 EV kit software from the MAX96751 Evaluation Kit product page. - 2. Verify that the on-board jumpers on the deserializer board are in their default positions (Figure 3) with SW1 off. - 3. Configure SW3 as shown in Figure 3 to set serializer address to 0x80, coax mode, and I2C control. - 4. Connect the FAKRA cable from the OUTA+ terminal on the serializer board to the INA+ terminal on the deserializer. - 5. Connect the +12V wall DC power supply into J1. See Figure 4 for power supply details. - 6. Turn SW1 on for both the serializer and deserializer EV kits. - 7. Verify that the blue power LED and red Teensy® LED are illuminated. - 8. Verify the lock LED on both serializer and deserial-izer EV kits light up, indicating that the link has been successfully established. If the LOCK_LED is off or ERRB LED is on the deserializer board, see the Troubleshooting section. Due to the default error conditions enabled on the serializer device versus the default hardware configuration of the serializer board, the ERRB LED will be illuminated upon powerup. - 9. Connect the USB cable between the PC and J4 on the serializer EV kit. Start the GUI by selecting Start | Programs | Analog Devices Inc | GMSL-SerDesEV. - 10. When the GUI opens, it automatically searches for any active listener in both I2C and UART mode and identifies a valid GMSL product. Once the serializer and deserializer are identified, they are shown as tabs in the GUI. - 11. Read register 0x00 in both deserializer and serializer to ensure both devices are active. - 12. The basic bring-up is now complete. Refer to Help |User's Manual for GUI operation, GMSL2 User's Guide for configuration of this device and its available features, or ADI Applications for additional details and support. Figure 3. Serializer Evaluation Board Default Jumper ### **Table 1. Jumper Description** | JUMPER | SIGNAL DEFAULT POSITI ON | | FUNCTION | | |--------|--------------------------|-----|------------------------------|--| | JMP1 | VSUP | 12V | Select source of board power | | | VDDIO | VDDIO | 3.3V | Select between 1.8V and 3.3V | |---------|-----------|----------------------|---| | J2 | SCL_TX | SCL | I2C or UART connection to serializer | | J5 | SDA_RX | SDA | I2C or UART connection to serializer | | J10 | POCA | Open | Power-over-coax enable for PHY A | | J11 | POCB | Open | Power-over-coax enable for PHY B | | C63/C51 | SIOA+ | C63 (FAKRA/COA
X) | Allows switching between FAKRA and HSD connector | | C64/C70 | SIOB+ | C64 (FAKRA/COA
X) | Allows switching between FAKRA and HSD connector | | C47/C50 | SIOA- | C47 (AC Term) | Allows switching between AC termination and HSD connector | | C49/C68 | SIOB- | C49 (AC Term) | Allows switching between AC termination and HSD connector | | J6 | GPIO00 | N/A | Test Point | | J6 | MS | N/A | Test Point | | J6 | GPIO04 | N/A | Test Point | | J6 | RO | N/A | Test Point | | J6 | MOSI | N/A | Test Point | | J6 | ws | N/A | Test Point | | J6 | SD | N/A | Test Point | | J6 | SCKOR_ADD | N/A | Test Point | | J6 | СХТР | N/A | Test Point | | J6 | LOCK | N/A | Test Point | | J6 | SDA_RX | N/A | Test Point | | J6 | GND | N/A | Test Point | | J6 | GPIO01 | N/A | Test Point | | J6 | RCLKEN | N/A | Test Point | | J6 | SS1 | N/A | Test Point | | J6 | MISO | N/A | Test Point | | J6 | SCLK | N/A | Test Point | |----|-----------|-----|------------| | J6 | SCK | N/A | Test Point | | J6 | SDOR_ADD0 | N/A | Test Point | | J6 | WSOR_ADD2 | N/A | Test Point | | J6 | I2CSEL | N/A | Test Point | | J6 | ERRB | N/A | Test Point | | J6 | SCL_TX | N/A | Test Point | | J6 | GND | N/A | Test Point | | JUMPER | SIGNAL | DEFAULT POSITI
ON | FUNCTION | | | |------------|-----------------------------|----------------------|------------|--|--| | TP_USB_5V | USB 5V | N/A | Test Point | | | | TPS_3V3 | 3.3V | N/A | Test Point | | | | TP_CEC | CEC (HDMI) N/A | | Test Point | | | | TP_HDMI_5V | HDMI 5V | N/A | Test Point | | | | TP_1V | 1V | N/A | Test Point | | | | TP_1V8 | 1.8V | N/A | Test Point | | | | TP_3V3 | 3.3V | N/A | Test Point | | | | PWDNB | Power Down (
active low) | N/A | Test Point | | | Table 2. Items Included in the Evaluation Kit Package | ITEM DESCRIPTION | QTY | |------------------|-----| | MAX96751 EV Kit | 1 | | USB Cable | 1 | | +12V Wall Supply | 1 | # **Troubleshooting** If the MAX96751 EV Kit fails to power up or does not function properly, try the appropriate remedial actions below: - 1. Make sure the boards' red power switches (SW1) are set to the ON position. - 2. Verify that the device is powered properly. Check to ensure that the voltages at all device pins are within their - operating ranges. - 3. Check that all jumpers are correctly set. Refer to the default jumper settings table in the serializer and deserializer EV kit data sheets. Also, ensure that all jumpers are firmly attached. Replace loose or damaged jumpers if necessary. - 4. Check that the USB cable is properly seated in the USB port. The USB LED should be lit if connected to a PC, even if the board is powered down. - 5. Check that the serializer and deserializer GMSL generations match. Both devices should start in the same mode (GMSL2). - 6. Check that the COAX/STQ cable connection between serializer and deserializer is good—it clicks when plugged in fully. - 7. Check to see if the DUT has been inadvertently put into Teensy reset mode. The board's TEENSY_RST button should only be pressed when firmware is being flashed to the DUT. If the button is pressed during normal operation, the device goes into Teensy reset mode. Power-cycle the board to resume normal operation with the current firmware. - 8. Check that the I2C/UART jumpers match the DUT communication mode (SCL/SDA for I2C, TX/RX for UART). - 9. Check that the AC coupling capacitors are populated correctly and routing the serial link to the correct connector for COAX or STQ mode. For coax boards, capacitors C63 and C46 (SIOA) and capacitors C64 and C49 (SIOB) should be populated. For HSD boards, capacitors C60 and C51 (SIOA), and capacitors C68 and C70 (SIOB) should be populated. (MAX96751 COAX/HSD EV kit boards are shipped with the correct capacitors installed.) - 10. Check if the LOCK LED is ON in the absence of a connection to the deserializer: If so, then the DUT is either not powered correctly or damaged. - 11. Check that the microcontroller firmware is active by observing the blinking red Teensy LED (DS6) at power-up. If the LED is not blinking, refer to the available software documentation to reprogram the microcontroller. - 12. Check that the PC is detecting the COM port when the micro-USB cable is connected. Use the Windows Device Manager to check COM port status. - 13. Power-cycle the board and reopen the GUI. - 14. Serializer board is faulty, try a new or different serializer board. ### **Detailed Description of Hardware** The power configuration of the EV kit hardware may be re-configured to allow external supply connections. Figure 4 shows the power connection options. Figure 4. Serializer Evaluation Board Power Connection Diagram # **Component Suppliers** | SUPPLIER | PHONE | WEBSITE | |---|-------------------|-----------------------------| | Amphenol RF | 800-627-7100 | www.amphenolrf.com | | Hong Kong X'tals Ltd. | 852-35112388 | www.hongkongcrystal.com | | Murata Electronics North America, In c. | 770-436-1300 | www.murata-northamerica.com | | ON Semiconductor | 602-244-6600 | www.onsemi.com | | Rosenberger Hochfrequenztechnik G mbH | 011-49-86 84-18-0 | www.rosenberger.de | | TDK Corp. | 847-803-6100 | www.component.tdk.com | Note: Indicate that you are using the MAX96751 when contacting these component suppliers. # **Ordering Information** | PART | ТҮРЕ | |--------------------|-------------------| | MAX96751COAXEVKIT# | EV kit | | MAX96751HSDEVKIT# | EV kit | | MAX-GMSL-I2S-ADP# | I2S Audio Adapter | ### MAX96751EV Kit Bill of Materials | IT
E
M | REF_DE
S | DNI
/DN
P | Q
T
Y | MFG PART# | MANUFACTUR
ER | VALUE | DESCRIPTION | COM
MEN
TS | |--------------|--|-----------------|-------------|---|---|-------|---|------------------| | 1 | C1, 2 | _ | 2 | EMK316BB72
26ML | TAIYO YUDEN | 22UF | CAPACITOR; SMT (1206);
CERAMIC CHIP; 22UF; 16
V; TOL=20%; TG=-55 DEG
C TO +125 DEGC; TC=X7
R | | | 2 | C6, C7 | _ | 2 | C3216X5R1E
476M160AC | TDK | 47UF | CAPACITOR; SMT (1206);
CERAMIC CHIP; 47UF; 25
V; TOL=20%; MODEL=C S
ERIES; TG=-55 DEGC TO
+85 DEGC; TC=X5R; | | | 3 | C8, C9, C
12-C14,
C19- C25
, C77 | _ | 13 | GRT188R61C
106KE13 | MURATA | 10UF | CAPACITOR; SMT (0603);
CERAMIC CHIP; 10UF; 16
V; TOL=10%; TG=-55 DEG
C TO +85 DEGC; TC=X5R;
AUTO | | | 4 | C10, C11
, C17, C1
8, C26, C
29-C32,
C34-C41,
C46, C47
, C49, C5
2, C53, C
56, C58,
C59, C62
-C64, C6
6, C67, C
72-C74,
C78 | _ | 34 | CGA2B3X7R
1H104K050B
B;C1005X 7R
1H104K050B
B;GRM155R7
1H104 KE14;
GCM155R71
H104KE02;C1
005
X7R1H104K0
50BE;UMK10
5B7104K V-F
R;CGA2B3X7
R1H104K050
BE | TDK;TDK;MURA
TA;MURATA;TD
K;TAIYO YUDEN
;TDK | 0.1UF | CAPACITOR; SMT (0402);
CERAMIC CHIP; 0.1UF;
50V; TOL=10%; TG=-55 D
EGC TO +125 DEGC; TC=
X7R | | | 5 | C15 | _ | 1 | C1608X7R1V
105K080AC;C
GA3E1X 7R1
V105K080AC | TDK;TDK | 1UF | CAPACITOR; SMT (0603);
CERAMIC CHIP; 1UF; 35V
; TOL=10%; TG=-55 DEGC
TO +125 DEGC; TC=X7R | | | 6 | C16, C28
, C33 | _ | 3 | GRM188Z71
C225KE43 | MURATA | 2.2UF | CAPACITOR; SMT (0603);
CERAMIC CHIP; 2.2UF;
16V; TOL=10%;
TG=-55 DEGC TO +125 D
EGC; TC=X7R | | | 7 | C42, C48 | _ | 2 | C0402C0G50
0-150JNP; G
RM1555C1H1
50JA01 | VENKEL LTD.;M
URATA | 15PF | CAPACITOR; SMT (0402);
CERAMIC CHIP; 15PF; 50
V; TOL=5%; TG=-55
DEGC TO +125 DEGC; TC
=C0G | | |-----|---|---|----|--|--|------------------|---|---| | 8 | C43-C45,
C54, C55
, C57, C6
0, C61, C
65, C69 | _ | 10 | GRM155R71
H103JA88 | MURATA | 0.01UF | CAPACITOR; SMT (0402);
CERAMIC CHIP; 0.01UF;
50V; TOL=5%; TG=-55 DE
GC TO +125 DEGC; TC=X
7R | | | 9 | C71 | _ | 1 | C0402C0G50
0- 470JNE;C
C0402JRNPO
9BN470;GR
M1555C1H47
0JA01;CL05C
470JB5N NN | VENKEL LTD.;Y
AGEO PHYCOM
P;MURATA;SAM
SUNG ELECTR
ONICS | 47PF | CAPACITOR; SMT (0402);
CERAMIC CHIP; 47PF; 50
V; TOL=5%; MODEL=; TG
=-55 DEGC TO +125 DEG
C; TC=C0G | | | 1 0 | C75, C7
6 | _ | 2 | TMK212AB74
75K;CGJ4J1X
7R1E475
K125AC;C201
2X7R1E475K
125AB;C GA
4J1X7R1E475
K125AC;GRM
21BZ
71E475KE15 | TAIYO YUDEN;T
DK;TDK;TDK;M
URATA | .7UF | CAPACITOR; SMT (0805);
CERAMIC CHIP; 4.7UF;
25V; TOL=10%; TG=-55 D
EGC TO +125 DEGC; TC=
X7R | | | 11 | D1, D2 | _ | 2 | ES1D | FAIRCHILD SE
MICONDUCTOR | ES1D | DIODE; RECT; SMA (DO-2
14AC); PIV=200V; IF=1A | - | | 12 | D3 | _ | 1 | DFLS140L | DIODES INCOR
PORATED | DFLS140
L | DIODE; SCH; SMT (POWE
RDI-123); PIV=40V; IF=1A | | | 13 | D4 | - | 1 | B360B-13-F | DIODES INCOR
PORATED | B360B-1
3-F | DIODE; SCH; SCHOTTKY
BARRIER DIODE; SMB; PI
V=60V; Io=3A;
-55 DEGC TO +125 DEGC | | | 14 | D5 | _ | 1 | 1N4742A | FAIRCHILD SE
MICONDUCTOR | 12V | DIODE, ZENER, DO-41, P
d=1W, Vz=12V@lz=21mA | | | 15 | DS3 | _ | 1 | SMLE13BC8T | ROHM SEMICO
NDUCTOR | SMLE13
BC8T | DIODE; LED; SML-E1 SER
IES; BLUE; SMT (0603); V
F=2.9V; IF=0.005A; | | | 16 | DS4, DS6 | _ | 2 | SML-P11UTT
86 | ROHM | SML-P11
UTT86 | DIODE; LED; SMT; PIV=1.
8V; IF=0.02A | | | 17 | DS5 | _ | 1 | SML-P11MTT
86 | ROHM | SML-P11
MTT86 | DIODE; LED; SMT; PIV=5V
; IF=0.02A | | | 18 | EXT, GN
D | _ | 2 | 9020 BUSS | WEICO WIRE | MAXIMP
AD | EVK KIT PARTS; MAXIM P
AD; WIRE; NATURAL;
SOLID; WEICO WIRE; SO
FT DRAWN BUS TYPE-S;
20AWG | | |----|-------------------|---|---|---------------------|---------------------|-------------------------|--|--| | 19 | J1 | _ | 1 | PJ-002AH | CUI INC. | PJ-002A
H | CONNECTOR; MALE; THR OUGH HOLE; DC POWER JACK; RIGHT ANGLE; 3PINS | | | 20 | J2, J5, V
DDIO | _ | 3 | PCC03SAAN | SULLINS | PCC03S
AAN | CONNECTOR; MALE; THR
OUGH HOLE; BREAKAWA
Y; STRAIGHT THROUGH;
3PINS; -65 DEGC TO +125
DEGC | | | | | | | | | 2005700 | CONNECTOR; FEMALE; T
HROUGH HOLE; 0.3MM PI
TCH BEAU | | | 21 | J3 | _ | 1 | 393570002 | MOLEX | 3935700
02 | EUROSTYLE FIXED MOU
NT PCB TERMINAL BLOC
K; RIGHT ANGLE; 2PINS | | | 22 | J4 | _ | 1 | 1981568-1 | TE CONNECTIVI
TY | 1981568-
1 | CONNECTOR; FEMALE; S
MT; MICRO USB STANDA
RD TYPE B ASSY; RIGHT
ANGLE; 5PINS | | | 23 | J6 | _ | 1 | PEC12DAAN | SULLINS ELECT | PEC12D | CONNECTOR; MALE; THR
OUGH HOLE; .1IN CC; BR
EAKAWAY | | | | | | | | RONICS CORP | AAN | HEADER; STRAIGHT; 24P
INS | | | 24 | J7 | _ | 1 | PBC03SAAN | SULLINS | PBC03S
AAN | CONNECTOR; MALE; THR
OUGH HOLE; BREAKAWA
Y; STRAIGHT; 3PINS; -65
DEGC TO +125 DEGC | | | 25 | J8 | _ | 1 | HDMR-19-01
-S-SM | SAMTEC | HDMR-1
9-01-S-S
M | CONNECTOR; FEMALE; S
MT; HIGH SPEED I/O REC
EPTACLE;
RIGHT ANGLE; 19PINS | | | 26 | J10, J11 | _ | 2 | PCC02SAAN | SULLINS | PCC02S
AAN | CONNECTOR; MALE; THR
OUGH HOLE; BREAKAWA
Y; STRAIGHT THROUGH;
2PINS; -65 DEGC TO +125
DEGC | | | 27 | J12 | _ | 1 | ERF8-010-05
.0-S-DV-K | SAMTEC | ERF8-01
0-05.0-S
-DV-K | CONNECTOR; FEMALE; S
MT; RUGGED HIGH SPEE
D SOCKET;
STRAIGHT; 20PINS; | | |-----|--------------------|---|---|-------------------------------|---------------------------------------|------------------------------|---|--| | 28 | JAP, JBP | _ | 2 | 59S2AQ-40M
T5-Z_1 | ROSENBERGE
R | 59S2AQ-
40MT5-Z
_1 | CONNECTOR; MALE; THR OUGH HOLE; FAKRA-HF RIGHT ANGLE PLUG PCB WITH HOUSING; RIGHT A NGLE; 5PINS | | | 29 | JMP1 | _ | 1 | PEC04SAAN | SULLINS ELECT
RONICS CORP. | PEC04S
AAN | CONNECTOR; MALE; THR OUGH HOLE; BREAKAWA Y; STRAIGHT; 4PINS | | | 30 | L1, L6, L8
-L10 | _ | 5 | BLM18KG601
SN1 | MURATA | 600 | INDUCTOR; SMT (0603); F
ERRITE-BEAD; 600; TOL=
+/-25%; 1.3A | | | 31 | L2 | _ | 1 | DFE252012P-
4R7M=P2 | MURATA | 4.7UH | INDUCTOR; SMT (2520); F
ERRITE CORE; 4.7UH; TO
L=+/-20%; 1.7A | | | 32 | L3, L4 | _ | 2 | TFM201610A
LMA2R2MTA
A | TDK | 2.2UH | INDUCTOR; SMT (2016); T
HIN FILM; 2.2UH; TOL=+/-
20%; 2.1A | | | 33 | L5 | _ | 1 | TFM252012A
LMA-3R3MT
AA | TDK | 3.3UH | EVKIT PART-INDUCTOR;
SMT; ORIGINAL FINE CO
PPER; 3.3UH; TOL=+/-
20%; 2.2A | | | 34 | L7 | _ | 1 | RFCMF12201
00M3 | WALSIN TECHN
OLOGY CORPO
RATION | RFCMF1
220100M
3 | INDUCTOR; SMT;
CERAMIC CHIP; CHOKE;
0.3A | | | 35 | L11 | _ | 1 | BLM18SG121
TN1 | MURATA | 120 | INDUCTOR; SMT (0603); F
ERRITE-BEAD; 120; TOL=
+/-25%; 3A | | | 36 | L12, L13 | _ | 2 | LPS4040-154
MR | COILCRAFT | 150UH | INDUCTOR; SMT; FERRIT
E; 150UH; 20%; 0.65A; | | | 37 | L14, L18 | _ | 2 | 1210POC-22
3MR | COILCRAFT | 22UH | INDUCTOR; SMT; FERRIT
E; 22UH; 20%; 0.7A; | | | 38 | L15, L19 | _ | 2 | PFL1005-561
MR | COILCRAFT | 560NH | INDUCTOR; SMT (0402); S
HIELDED; 560NH; 20%; 0.
53A | | | 3 9 | PWDNB | _ | 1 | 5000 | KEYSTONE | N/A | TEST POINT; PIN DIA=0.1I N; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; RE D; PHOSPHOR BRONZE WIRE SILVER PLATE FINI SH; | | | 40 | R1-R3, R
20-R23,
R25, R26
, R33, R4
3, R55-R
59, R61-
R66, R80
, R81 | _ | 24 | ERJ-2GEJ10
3 | PANASONIC | 10K | RESISTOR; 0402; 10K OH
M; 5%; 200PPM; 0.10W; T
HICK FILM | | |----|---|---|----|-----------------|-----------|-----|--|--| |----|---|---|----|-----------------|-----------|-----|--|--| # **MAX96751EV Schematics** # MAX96751EV Schematics MAX96751 Evaluation Kit ### MAX96751EV PCB Layouts MAX96751 EV Kit Component Placement Guide—Top Silkscreen MAX96751 EV Kit PCB Layout—Top Layer MAX96751 EV Kit PCB Layout—Internal 2 MAX96751 EV Kit PCB Layout—Internal 3 # MAX96751EV PCB Layouts (continued) MAX96751 EV Kit PCB Layout—Internal 4 MAX96751 EV Kit PCB Layout—Internal 5 MAX96751 EV Kit PCB Layout—Internal 6 MAX96751 EV Kit PCB Layout—Internal 7 MAX96751 EV Kit PCB Layout—Bottom MAX96751 EV Kit PCB Layout—Bottom Silkscreen # **Revision History** | REVISIO
N NUMB
ER | REVISIO
N DATE | DESCRIPTION | PAGES CHANG
ED | |-------------------------|-------------------|-----------------|-------------------| | 0 | 11/23 | Initial release | _ | Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. #### **Documents / Resources** ANALOG DEVICES MAX96751 EVKIT Evaluation Board [pdf] User Guide MAX96751 EVKIT Evaluation Board, MAX96751, EVKIT Evaluation Board, Board Board ### References - M PJRC: Electronic Projects - Home Hong Kong Crystal - R Rosenberger Group Radio Frequency, High-Voltage and Fiber Optic Connections - User Manual Manuals+, Privacy Policy This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.