Manuals+ — User Manuals Simplified.

ANALOG DEVICES MAX16132 Multi Voltage Supervisors with Xilinx FPGAs Owner's Manual

April 23,

2025

Home » Analog Devices » ANALOG DEVICES MAX16132 Multi Voltage Supervisors with Xilinx FPGAs Owner's Manual 📆

Contents [hide]

- 1 ANALOG DEVICES MAX16132 Multi-Voltage Supervisors with Xilinx FPGAs
- 2 Product Specifications
- 3 Xilinx FPGA Family Voltage Specifications
- 4 Product Usage Instructions
- 5 Supervisory Devices Complementary Parts Guide for Xilinx FPGAs
- 6 Multi-voltage Supervisors with Xilinx FPGAs
- 7 Window Voltage Supervisors
- 8 Selecting the Right Tolerance Window
- 9 Power Supply Sequencing
- 10 FAQs
- 11 Documents / Resources
 - 11.1 References

ANALOG DEVICES MAX16132 Multi-Voltage Supervisors with Xilinx FPGAs

Product Specifications

Product Name

Supervisory Devices Complementary Parts Guide for Xilinx FPGAs

Description

This guide provides information on multi-voltage supervisors compatible with Xilinx FPGAs to ensure system stability.

Xilinx FPGA Family Voltage Specifications

FPGA Family	Core Voltage (V)	Auxiliary Voltage (V)	I/O Voltage (V)
Virtex UltraScal e+	0.85, 0.72, 0.9	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Virtex UltraScal	0.95, 1	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3

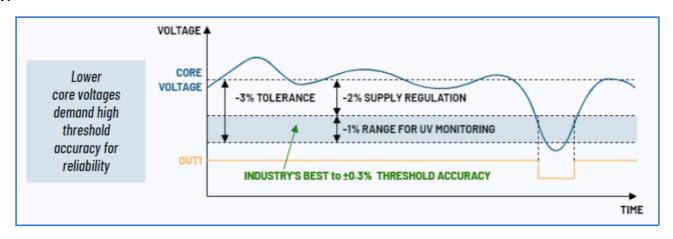
Product Usage Instructions

Step 1: Identify the FPGA Family Voltage Requirements

Refer to the table above to determine the core voltage, auxiliary voltage, and I/O voltage requirements for your specific Xilinx FPGA family.

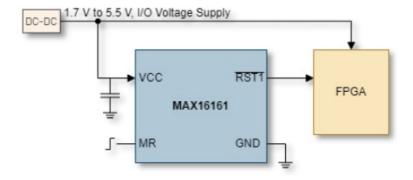
Step 2: Select the Appropriate Multi-voltage Supervisor

Based on the voltage requirements of your Xilinx FPGA, choose the corresponding ADI Multi-voltage Supervisor part number MAX16132.

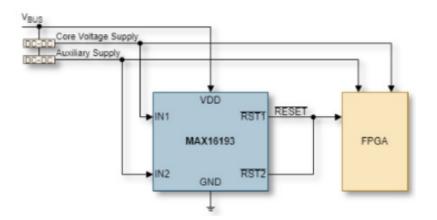

Step 3: Installation and Configuration

Follow the installation instructions provided with the MAX16132 supervisor to monitor and maintain the required voltages for your Xilinx FPGA.

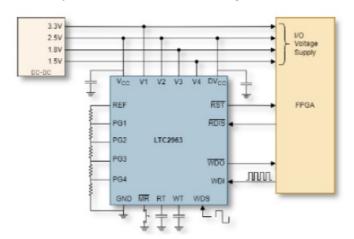
Supervisory Devices Complementary Parts Guide for Xilinx FPGAs


Modern FPGA designs leverage advanced fabrication techniques, enabling smaller process geometries and lower core voltages. This trend, however, necessitates the use

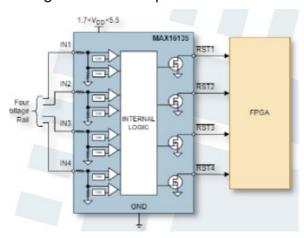
of multiple voltage rails to accommodate legacy I/O standards. To guarantee system stability and prevent unexpected behavior, each of these voltage rails requires dedicated supervision. Analog Devices offers a comprehensive portfolio of voltage monitoring solutions, encompassing a wide range,e; from basic single-channel to feature-rich multivoltage supervisors boasting industry-leading accuracy (up to ±0.3% across temperatures). The core, I/O, and auxiliary voltage requirements for various Xilinx® FPGA families are presented in a clear and easy-to-reference table. Core voltage ranges typically span from 0.72 V to 1 V, while I/O voltage levels can vary between 1 V and 3.3 V.


MAX16161:

nanoPower Supply Supervisor with Glitch-Free Power-Up and Manual Reset


MAX16193:

±0.3% Accuracy Dual-Channel Window-Detector Supervisory Circuit


LTC2963:

±0.5% Quad Configurable Supervisor with Watchdog Timer

MAX16135:

±1% Low-Voltage, Quad-Voltage Window Supervisor

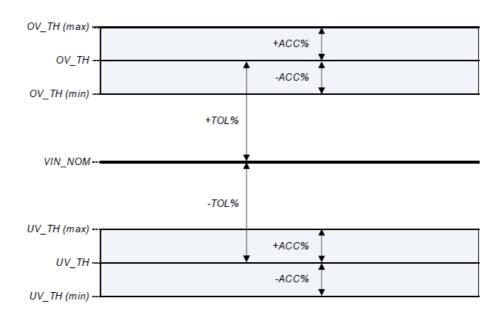
Multi-voltage Supervisors with Xilinx FPGAs

Xilinx FPGAs

	T.	I	
Xilinx FPGA Family	Core Voltag e (V)	Auxiliary Vo Itage (V)	I/O Voltage (V)
Virtex UltraScale+	0.85, 0.72, 0.90	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Virtex UltraScale	0.95, 1	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Virtex 7	1, 0.90	1.8, 2.0	1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Kintex UltraScale+	0.85, 0.72, 0.90	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Kintex UltraScale	0.95, 0.90, 1.0	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Kintex 7	1, 0.90, 0.95	1.8	1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Artix UtraScale+	0.85, 0.72	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Artix 7	1.0, 0.95, 0.90	1.8	1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Spartan Ultrascale+	0.85, 0.72, 0.90	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3
Spartan 7	1, 0.95	1.8	1.2, 1.35, 1.5, 1.8, 2.5, 3.3

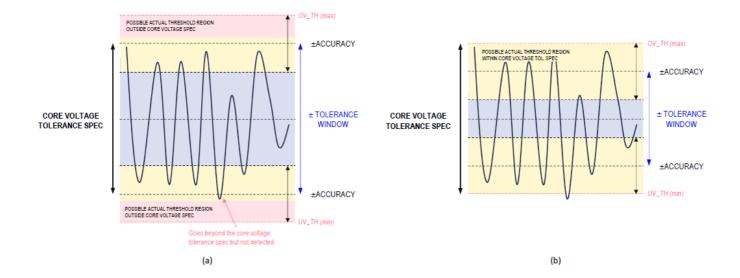
ADI Multi-voltage Supervisors

Number of Volt ages Monitored	Part Number	Voltages Monitored (V)	Accuracy (%)
1	MAX16132	1.0 to 5.0	<1
1	MAX16161, MAX16162	1.7 to 4.85, 0.6 to 4.85	<1.5
2	MAX16193	0.6 to 0.9, 0.9 to 3.3	<0.3
3	MAX16134	5.0, 4.8, 4.5, 3.3, 3.0, 2.5, 1.8, 1.2, 1.16, 1.0	<1
4	LTC2962, LTC296 3, LTC2964	5.0, 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, 0.5V	<0.5
4	MAX16135	5.0, 4.8, 4.5, 3.3, 3.0, 2.5, 2.3, 1.8, 1.5, 1.36, 1.22, 1.2, 1.16, 1.0	<1
4	MAX16060	3.3, 2.5, 1.8, 0.62 (adj)	<1
6	LTC2936	0.2 to 5.8 (Programmable)	<1

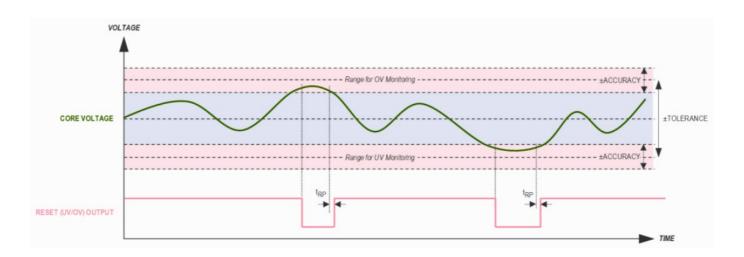

Window Voltage Supervisors

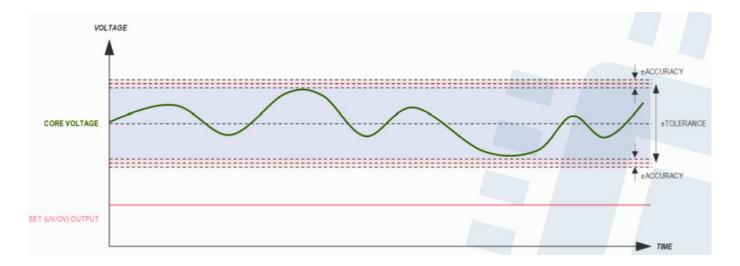
Window voltage supervisors are used to ensure FPGAs operate within a safe voltage

specification range. They do this by having undervoltage (UV) and overvoltage (OV) thresholds and generating a reset output signal if it goes beyond the tolerance window to avoid system errors and prevent damage to your FPGAs and other processing devices. There are two main things to consider when choosing a window voltage supervisor: Tolerance and Threshold Accuracy.


Tolerance is the range around the nominal monitored value which sets the overvoltage and undervoltage thresholds. While, Threshold Accuracy, typically expressed in percentage, is the degree of the conformance of the actual to the target reset thresholds.

• Undervoltage and overvoltage threshold variation with Threshold Accuracy


Selecting the Right Tolerance Window


Choosing a window supervisor with the same tolerance as the core voltage requirement can lead to malfunctions due to threshold accuracy. Setting the same tolerance as the operating requirement of the FPGA can trigger a reset output near the maximum overvoltage threshold, OV_TH (max), and minimum undervoltage threshold,d UV_TH (min). The figure below illustrates tolerance setting (a) same with core voltage tolerance vs. (b) within the core voltage tolerance.

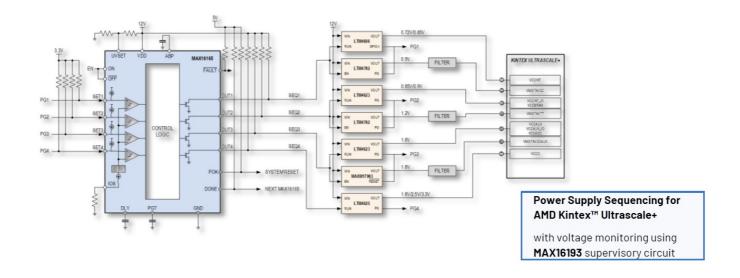
Impact of Threshold Accuracy

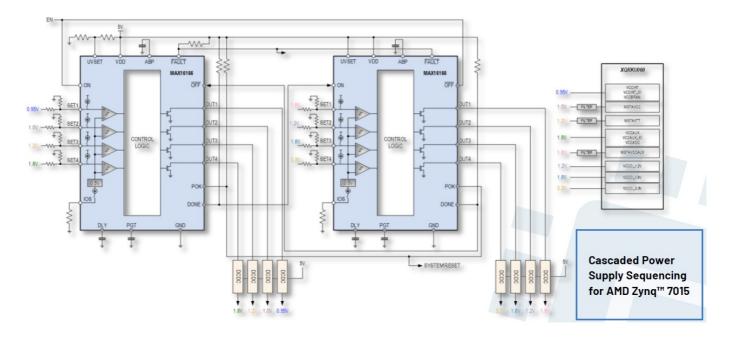
Compare two window voltage supervisors with different threshold accuracy, monitoring the same core voltage supply rail. The supervisor with a higher threshold accuracy will deviate less from the threshold limits in comparison to voltage supervisors with lower accuracy. Examining the figure below, window supervisors with lower accuracy (a) create a narrow power supply window since the reset output signal can assert anywhere within the UV and OV monitoring range. In applications with unreliable power supply regulation, this could pose a more sensitive system prone to oscillation. On the other hand, supervisors with high threshold accuracy (expand this range to provide a wider safe operating range for your power, which will, overall performance.

Power Supply Sequencing

Modern FPGAs utilize multiple voltage rails for optimal performance. Defined power-up and power-down sequencing requirements are crucial for FPGA reliability. Improper sequencing introduces glitches, logic errors, and even permanent damage to sensitive FPGA components. Analog Devices offers a comprehensive range of supervisory/sequencing circuits specifically designed to address the challenges of FPGA power management. These devices orchestrate the power-up and power-down sequence of various voltage rails, guaranteeing that each rail reaches its designated voltage level within its required ramp time and order. This power management solution minimizes inrush current, prevents voltage undershoot/overshoot conditions, and ultimately safeguards the integrity of your FPGA design.

ADI Supervisory and Sequencing Solutions


Number of Supplies M onitored	Part Number	Operating Vrange	Thresh old Accura	Sequence	Program ming Method	Packag e
1: cascada ble	MAX168 95	1.5 to 5.5V	1%	Up	R's, C's	6 uDFN


1: cascada ble	MAX160 52, MAX 16053	2.25 to 28 V	1.8%	Up	R's, C's	6 SOT2 3
2: cascada ble	MAX681 9, MAX6 820	0.9 to 5.5V	2.6%	Up	R's, C's	6 SOT2 3
2	MAX160 41					16 TQF N
3	MAX160 42	2.2 to 28V	2.7% an	Un	R's, C's	20 TQF N
4	MAX160 43	AX160	1.5% Up	Ор	N 5, O 5	24 TQF N
4: cascada	MAX161 65, MAX 16166	2.7 to 16V	0.80%	Up, Revers e- Power D own	R's, C's	20 WLP, 20L TQ FN
DIE	MAX160 50			Up, Revers e- Power D		28 TQF
5: cascada ble	MAX160 51	2.7 to 16V	1.5%	own	R's, C's	N N
6: cascada ble	LTC293	4.5 to 16.5 V	<1.5%	Programma ble	I2C, SMBu	28 QFN
8	ADM116 8	3 to 16V	<1%	Programma ble	SMBus	32 LQF P

8	ADM116 9	3 to 16V	<1%	Programma ble	SMBus	32 LQF P, 40 LFC SP
10: cascad able (max of 4)	ADM126 0	3 to 16V	<1%	Programma ble	SMBus	40 LFC SP
12: cascad able	ADM116 6	3 to 16V	<1%	Programma ble	SMBus	40 LFC SP, 48 TQF P
17: cascad able	ADM126 6	3 to 15V	<1%	Programma ble	PMBus	64 LFC SP

MAX16165/MAX16166:

Highly Integrated, 4-Channel Sequencer and Supervisor

FAQs

Q: Can I use a different multi-voltage supervisor with Xilinx FPGAs?

A: It is recommended to use the specified ADI Multi-voltage Supervisor MAX16132 for compatibility and accurate voltage monitoring.

Documents / Resources

ANALOG DEVICES MAX16132 Multi Voltage Supervisors with Xilinx FPG

As [pdf] Owner's Manual

MAX16132, MAX16132 Multi Voltage Supervisors with Xilinx FPGAs, Multi Voltage Supervisors with Xilinx FPGAs, Supervisors with Xilinx FPG As, Xilinx FPGAs

References

- User Manual
- Analog Devices
- Analog Devices, MAX16132, MAX16132 Multi Voltage Supervisors with Xilinx FPGAs, Multi Voltage Supervisors with Xilinx FPGAs, Supervisors with Xilinx FPGAs, Xilinx FPGAs
 - —Previous Post

Leave a comment

Your email address will not be published. Required fields are marked *

Comment *
Name
Email
Website
☐ Save my name, email, and website in this browser for the next time I comment.
Post Comment
Tost comment
Search
Search
Search
Search

@manualsplus YouTube

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of

these marks on this website does not imply any affiliation with or endorsement.