

ANALOG DEVICES LT8692S Monolithic Synchronous Step Down Regulator Instruction Manual


<u>Home</u> » <u>Analog Devices</u> » ANALOG DEVICES LT8692S Monolithic Synchronous Step Down Regulator Instruction Manual [™]

Contents

- 1 ANALOG DEVICES LT8692S Monolithic Synchronous Step-Down Regulator
- **2 Product Information**
- **3 Product Usage Instructions**
- **4 DESCRIPTION**
- **5 PERFORMANCE SUMMARY**
- **6 QUICK START PROCEDURE**
- **7 PARTS LIST**
- **8 Required Circuit Components**
- 9 SCHEMATIC DIAGRAM
- 10 Legal Terms and Conditions
- 11 LIMITATION OF LIABILITY
- 12 Documents / Resources
 - 12.1 References
- 13 Related Posts

ANALOG DEVICES LT8692S Monolithic Synchronous Step-Down Regulator

Product Information

Specifications:

• Input Voltage: 6.2V - 42V

• Output Voltage VOUT1: 4.80V - 5.20V

• Output Voltage VOUT2: 3.17V - 3.43V

• Output Voltage VOUT3: 1.73V - 1.87V

• Output Voltage VOUT4: 1.15V - 1.25V

• Maximum Output Current IOUT1: 2A

• Maximum Output Current IOUT2: 1A

• Maximum Output Current IOUT3: 1A

• Maximum Output Current IOUT4: 1A

• Switching Frequency: 1.8MHz – 2.2MHz

• Channel 1 Efficiency: 90% - 92%

• Channel 2 Efficiency: 90%

• Channel 3 Efficiency: 87%

• Channel 4 Efficiency: 90%

Product Usage Instructions

Quick Start Procedure:

- 1. With power off, connect the input power supply to the board through VIN and GND terminals on the top layer.
- 2. Connect the loads to the terminals VOUT1 and GND, VOUT2 and GND, VOUT3 and GND, VOUT4 and GND on the board.
- 3. Adjust the input voltage and load currents within the operating range.

4. Observe the output voltage regulation, transient, ripple voltage, efficiency, and other parameters.

Measurement Equipment Setup:

Refer to Figure 1 for proper equipment setup.

Parts List:

ITE M	QT Y	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBE R
1	1	C1	AVX, 06036D225KAT2A	
2	1	С3	CAP., 10pF, C0G, 50V, 5%, 0603	AVX, 06035A100JAT2A
3	1	C4	TAIYO YUDEN, LMK316ABJ476ML-T	
4	4	C5, C16, C19, C2	(Manufacturer/Part Number not provide d)	

FAQ:

- Q: Can the regulators be synchronized to an external clock input?
- A: Yes, all regulators can be synchronized to a common external clock input or internal oscillator of 2MHz.
- Q: Are the design files for this circuit board available?
- A: Yes, the design files for this circuit board are available.
- Q: Where can I find more information about the LT8692S?
- A: The LT8692S data sheet provides a complete description of the part, operation, and application information.
 It should be read in conjunction with the quick start guide for demo circuit EVAL-LT8692S-AZ.
- Q: What should I be careful of when measuring input or output voltage ripples?
- A: Care must be taken to avoid a long ground lead on the oscilloscope probe when measuring the input or output voltage ripples. Measure the input or output voltage ripple by touching the probe tip directly across the VIN or VOUT capacitor terminals.

DESCRIPTION

Demonstration circuit EVAL-LT8692S-AZ is an ultra-compact 4 rail power supply featuring the LT®8692S, a 42V quad monolithic synchronous step-down Silent Switcher®. The demo circuit is designed for 5V, 3.3V, 1.8V, and 1.2V outputs from a nominal 12V input. The 3.3V, 1.8V, and 1.2V converters are powered from the high voltage buck regulator with 5V output, which is powered from a wide range of 6.2V to 42V input. The current capability is 2A for channel 1 and 1A for the low voltage channels.

Internal soft-start, individual current limit, and independent enable for each channel simplify the complex design of quad-output power converters. All regulators can be synchronized to a common external clock input or internal oscillator of 2MHz.

The table below summarizes the performance of the demo board at room temperature. The circuit can be easily modified for different applications.

The LT8692S data sheet gives a complete description of the part, operation, and application information. The data

sheet must be read in conjunction with this quick start guide for demo circuit EVAL-LT8692S-AZ. Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

Specifications are at TA = 25°C

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT S
Input Voltage		6.2	12	42	V
Output Voltage VOUT1	VIN = 12V , IOUT1 = 1A	4.80	5	5.20	V
Output Voltage VOUT2	IOUT2 = 1A	3.17	3.3	3.43	V
Output Voltage VOUT3	IOUT3 = 1A	1.73	1.8	1.87	V
Output Voltage VOUT4	IOUT4 = 1A	1.15	1.2	1.25	V
Maximum Output Current I OUT1	Total Current with Channels 2, 3, 4 Disabled	2			А
Maximum Output Current I OUT2		1			А
Maximum Output Current I OUT3		1			А
Maximum Output Current I OUT4		1			А
Switching Frequency		1.8	2	2.2	MHz
Channel 1 Efficiency	VIN = 12V, VOUT = 5V, IOUT = 2A with Channel s 2, 3, 4 Disabled	90		%	
Channel 2 Efficiency	VIN234 = 5V , VOUT = 3.3V , IOUT = 1A	92			%
Channel 3 Efficiency	VIN234 = 5V , VOUT = 1.8V , IOUT = 1A	90			%
Channel 4 Efficiency	VIN234 = 5V , VOUT = 1.2V , IOUT = 1A	87		%	

QUICK START PROCEDURE

Demo circuit EVAL-LT8692S-AZ is easy to set up to evaluate the performance of the LT8692S. Refer to Figure 1 for proper equipment setup and follow the procedure below.

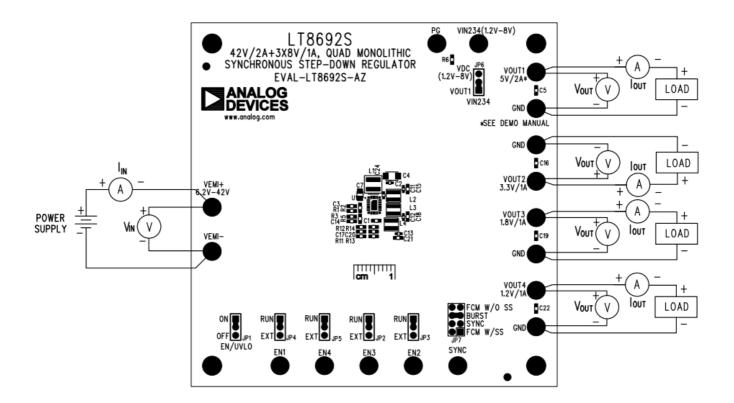

1. With power off, connect the input power supply to the board through VIN and GND terminals on the top layer. Connect the loads to the terminals VOUT1 and GND, VOUT2 and GND, VOUT3 and GND, VOUT4 and GND on the board. The default positions of the Headers are given in Table 1.

Table 1. Default Positions of the Headers

NAME	JUMPER	POSITION
EN/UVLO	JP1	ON
EN3	JP2	RUN
EN2	JP3	RUN
EN1	JP4	RUN
EN4	JP5	RUN
VIN234	JP6	VOUT1

- 2. Turn on the power at the input (VEMI+, VEMI-). Increase voltage to 12V. Make sure that the input voltage is always within spec. Refer to the data sheet on the burst mode operation in light load and high VIN conditions.
- 3. Check for the proper output voltages. The output should be regulated at 5V (±4%), 3.3V (±4%), 1.8V (±4%), 1.2V (±4%). Do not overload unless a proper thermal cooling method such as air flow or heat sink is applied.
- 4. Once the proper output voltage is established, adjust the input voltage and load currents within the operating range and observe the output voltage regulation, transient, ripple voltage, efficiency, and other parameters. When measuring the input or output voltage ripples, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VIN or VOUT capacitor terminals.

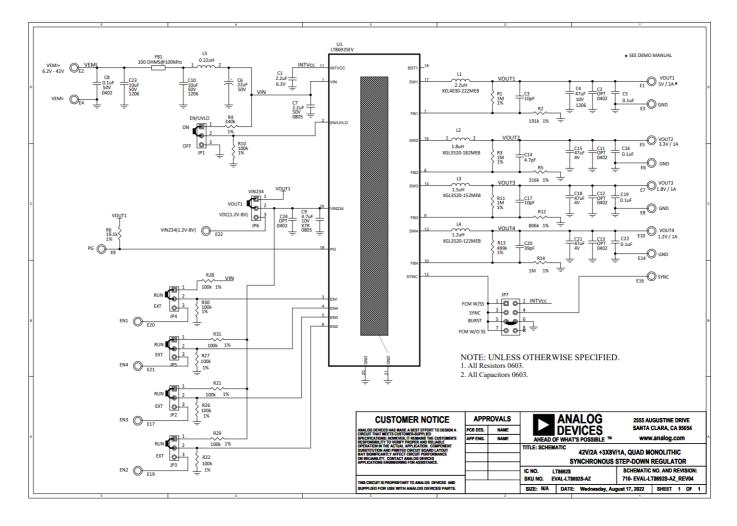
Figure 1. Proper Measurement Equipment Setup

ITE	QT	REFERENCE	PART DESCRIPTION	MANMFACTURER/PART NUMBER
M	Y	NEFERENCE	PART DESCRIPTION	WANWFACTURER/FART NUMBER

Required Circuit Components

	1			
1	1	C1	CAP., 2.2μF, X5R, 6.3V, 10%, 0603	AVX, 06036D225KAT2A
2	1	C3	CAP., 10pF, C0G, 50V, 5%, 0603	AVX, 06035A100JAT2A
3	1	C4	CAP., 47µF, X5R, 10V, 20%, 1206	TAIYO YUDEN, LMK316ABJ476ML-T
4	4	C5, C16, C19, C2	CAP., 0.1μF, X7R, 50V, 10%, 0603	AVX, 06035C104KAT2A
5	1	C6	CAP., 22µF, ALUM ELECT, 50V, 20%, 6.3mm × 5.4mm, RADIAL, SMD, CEBSS SERIES, AEC-Q200	SUN ELECTRONIC INDUSTRIES C ORP, 50CE22BSS
6	1	C7	CAP., 2.2µF, X7R, 50V, 10%, 0805	AVX, 08055C225KAT2A
7	1	C8	CAP., 0.1µF, X7R, 50V, 10%, 0402	AVX, 04025C104KAT2A
8	1	C9	CAP., 4.7μF, X7R, 10V, 10%, 0805, A EC-Q200	KEMET, C0805C475K8RACAUTO
9	2	C10, C23	CAP., 10μF, X5R, 50V, 10%, 1206	TAIYO YUDEN, UMK316BBJ106KL-T
10	1	C14	CAP., 4.7pF, C0G/NP0, 50V, ±0.25pF, 0603	MURATA, GRM1885C1H4R7CA01D
11	3	C15, C18, C21	CAP., 47μF, X5R, 4V, 20%, 0603	MURATA, GRM188R60G476ME15D
12	1	C17	CAP., 10pF, C0G, 50V, 5%, 0603	AVX, 06035A100JAT2A
13	1	C20	CAP., 39pF, C0G, 50V, 5%, 0603	AVX, 06035A390JAT2A
14	1	FB1	IND., 100Ω AT 100MHz, FERRITE BE AD, 25%, 2A, 40mΩ, 0603	TDK, MPZ1608Y101BTA00
15	1	L1	IND., 2.2 μ H, PWR, SHIELDED, 20%, 7.8A, 22.1 $m\Omega$, 4.3 $mm \times$ 4.3 mm , XEL4 030, AEC-Q200	COILCRAFT, XEL4030-222MEB
16	1	L2	IND., 1.8 μ H, POWER SHIELDED, 20 %, 2.9A, 24.1m Ω , 3.2mm × 3.5mm, A EC-Q200	COILCRAFT, XGL3520-182MEB
17	1	L3	IND., 1.5 μ H, POWER SHIELDED, 20 %, 3.1A, 19.8m Ω , 3.2mm × 3.5mm, A EC-Q200	COILCRAFT, XGL3520-152MEB
18	1	L4	IND., 1.2 μ H, POWER SHIELDED, 20 %, 3.5A, 15.8m Ω , 3.2mm × 3.5mm, A EC-Q200	COILCRAFT, XGL3520-122MEB
19	1	L5	IND., 0.22μH, PWR, SHIELDED, 20%, 6.5A, 11.4mΩ, 1212BZ, IHLP-11 SERI ES	VISHAY, IHLP1212BZERR22M11

20	4	R1, R3, R11, R14	RES., 1M, 1%, 1/10W, 0603, AEC-Q2	NIC, NRC06F1004TRF
21	1	R2	RES., 191k, 1%, 1/10W, 0603	VISHAY, CRCW0603191KFKEA
22	1	R4	RES., 340k, 1%, 1/10W, 0603	VISHAY, CRCW0603340KFKEA
23	1	R5	RES., 316k, 1%, 1/10W, 0603, AEC-Q 200	NIC, NRC06F3163TRF
24	1	R6	RES., 19.1k, 1%, 1/10W, 0603, AEC- Q200	PANASONIC, ERJ3EKF1912V
25	9	R10, R21, R22, R 26-R31	RES., 100k, 1%, 1/10W, 0603	STACKPOLE ELECTRONICS, INC., RMCF0603FG100K
26	1	R12	RES., 806k, 1%, 1/10W, 0603, AEC-Q 200	NIC, NRC06F8063TRF
27	1	R13	RES., 499k, 1%, 1/10W, 0603, AEC-Q 200	VISHAY, CRCW0603499KFKEA
28	1	U1	IC, QUAD MONOLITHIC SYNCHRON OUS STEP DOWN REGULATOR, LQ FN-20	ANALOG DEVICES, LT8692SIV#TRPBF


Additional Demo Board Circuit Components

1	0	C2, C11-C13, C24	CAP., OPTION, 0402
		02, 011 010, 021	3711.1, 31. 11311, 3.102

Hardware: For Demo Board Only

1	17	E1-E10, E14, E1 6, E17, E19-E22	TEST POINT, TURRET, 0.094" MTG. HOLE, PCB 0.062" THK	MILL-MAX, 2501-2-00-80-00-00-07-0
2	6	JP1-JP6	CONN., HDR, MALE, 1×3, 2mm, VER T, ST, THT, NO SUBS. ALLOWED	WURTH ELEKTRONIK, 6200031112
3	1	JP7	CONN., HDR, MALE, 2×4, 2mm, VER T, ST, THT	WURTH ELEKTRONIK, 6200082112 1
4	4	MP1-MP4	STANDOFF, NYLON, SNAP-ON, 0.50"	KEYSTONE, 8833
5	7	XJP1-XJP7	CONN., SHUNT, FEMALE, 2-POS, 2 mm	WURTH ELEKTRONIK, 6080021342

SCHEMATIC DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high-energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation, or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY.

Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations:

Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board;

• (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates, and in-house consultants.

The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. The customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customers may not disassemble, decompile, or reverse engineer chips on the Evaluation Board. The customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. The customer agrees to return to ADI the Evaluation Board at that time.

LIMITATION OF LIABILITY

THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND CONCERNING IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00) EXPORT.

The customer agrees that it will not directly or indirectly export the Evaluation Board to another country and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed by the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

www.analog.com

ANALOG DEVICES, INC. 2022 Downloaded from Arrow.com.

Documents / Resources

ANALOG DEVICES LT8692S Monolithic Synchronous Step Down Regulator [pdf] Instruction Manual

LT8692S Monolithic Synchronous Step Down Regulator, LT8692S, Monolithic Synchronous Step Down Regulator, Synchronous Step Down Regulator, Step Down Regulator, Down Regulator, Regulator

References

• User Manual

Manuals+, Privacy Policy