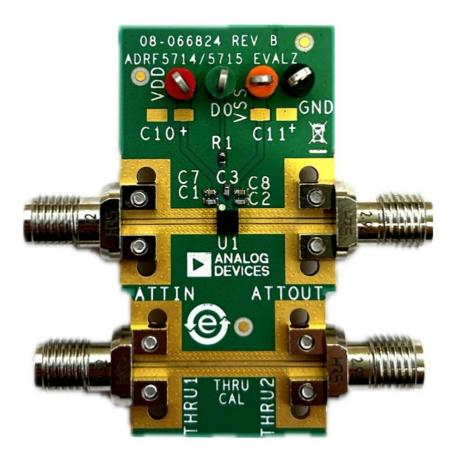


ANALOG DEVICES ADRF5715-EVALZ Silicon Digital Attenuator User Guide

Home » Analog Devices » ANALOG DEVICES ADRF5715-EVALZ Silicon Digital Attenuator User Guide



Contents

- 1 ANALOG DEVICES ADRF5715-EVALZ Silicon Digital
- **2 Product Usage Instructions**
- **3 FEATURES**
- **4 GENERAL DESCRIPTION**
- **5 EVALUATION BOARD HARDWARE**
- **6 TEST PROCEDURE**
- **7 TEST PROCEDURE**
- **8 EVALUATION BOARD SCHEMATIC AND ARTWORK**
- 9 ORDERING INFORMATION
- 10 Documents / Resources
 - 10.1 References
- 11 Related Posts

ANALOG DEVICES ADRF5715-EVALZ Silicon Digital Attenuator

Specifications

• Product Name: ADRF5715 Silicon Digital Attenuator

Attenuation Control Range: 16 dB
 Frequency Range: 1 MHz to 30 GHz

• Manufacturing Process: Silicon on Insulator (SOI)

Product Usage Instructions

Equipment Needed

- DC power supplies
- · Network analyzer

General Description

The ADRF5715 is a 1-bit digital attenuator with a 16 dB attenuation control range manufactured using the silicon-on-insulator (SOI) process.

Evaluation Board Hardware

- The ADRF5715-EVALZ is a connectorized board assembled with the ADRF5715 and its application circuitry.
- All components are on the primary side of the board.

Board Layout

The ADRF5715-EVALZ is designed using RF circuit design techniques on a 4-layer printed circuit board (PCB).

Power Supply and Control Inputs

- The board has two power supply inputs, three control inputs, and a ground connection.
- Connect the power supplies as per Table 1 in the manual.
- The typical current consumption is between 630 mA and 660 mA.

FAQ

Q: What is the typical current consumption for the ADRF5715?

• A: The typical total current consumption for the ADRF5715 is between 630 mA and 660 mA.

FEATURES

- Full-featured evaluation board for the ADRF5715
- · Easy connection to test equipment
- Additional throughline for calibration

EQUIPMENT NEEDED

- · DC power supplies
- · Network analyzer

GENERAL DESCRIPTION

- The ADRF5715 is a 1-bit digital attenuator with a 16 dB attenuation control range manufactured in the siliconon-insulator (SOI) process.
- This user guide describes the ADRF5715-EVALZ evaluation board, which is designed to simply evaluate the features and performance of the ADRF5715. A photograph of the evaluation board is shown in Figure 1.
- For full details on the ADRF5715, see the ADRF5715 data sheet, which should be consulted in conjunction with this user guide when using the ADRF5715-EVALZ.

ADRF5715-EVALZ EVALUATION BOARD PHOTOGRAPH

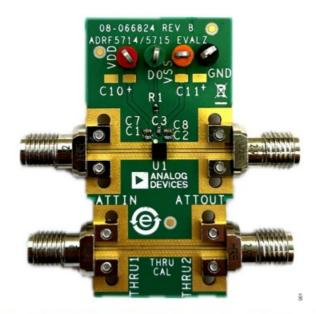


Figure 1. ADRF5715-EVALZ Evaluation Board Photograph

EVALUATION BOARD HARDWARE

OVERVIEW

- The ADRF5715-EVALZ is a connectorized board, assembled with the ADRF5715 and its application circuitry.
- All components are placed on the primary side of ADRF5715-EVALZ. An assembly drawing for the ADRF5715-EVALZ is shown in Figure 8, and an evaluation board schematic is shown in Figure 7.

BOARD LAYOUT

• The ADRF5715-EVALZ is designed using RF circuit design techniques on a 4-layer printed circuit board (PCB). The PCB stack-up is shown in Figure 2.

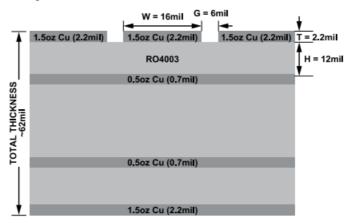


Figure 2. Evaluation Board Stack-Up

- The outer copper layers are 1.5 oz (2.2 mil) thick and the inner layers are 0.5 oz (0.7 mil) thick.
- The top dielectric material is 12 mil Rogers 4003, which provides 50 Ω controlled impedance and optimizes the high-frequency performance.
- All RF traces are routed on the top layer, and the second layer is used as the ground plane for RF transmission lines.
- The remaining two layers are also ground planes filled with FR4 material to manage the thermal rise during high-power operations and

are supported with dense and filled vias to the PCB bottom for thermal relief. The overall board thickness is approximately 62 mil for mechanical strength.

- The RF transmission lines are designed using a coplanar wave-guide (CPWG) model with a width of 16 mils and ground spacing of 6 mils to have a characteristic impedance of 50 Ω. Ground via fences are arranged on both sides of the CPWG to improve isolation between nearby RF lines and other signal lines.
- The exposed ground pad of the ADRF5715, which is soldered on the PCB ground pad, is the main thermal conduit for heat dissipation.
- The PCB ground pad is densely populated with filled, through vias to provide the lowest possible thermal resistance path from the top to the bottom of the PCB.
- The connections from the package ground lead to the ground are kept as short as possible.

POWER SUPPLY AND CONTROL INPUTS

- The ADRF5715-EVALZ has two power-supply inputs, three control inputs, and a ground, as shown in Table 1. The DC test points are populated on VDD, VSS, D0, and GND. A 3.3 V supply is connected to the DC test points on VDD, and the –3.3 V supply is connected to the DC test points on VSS. A ground reference can be connected to GND. Connect the control input, D0, to 3.3 V or 0 V.
- The typical total current consumption for the ADRF5715 is between 630 mA and 660 mA.
- The VDD and VSS supply pins and control pins of the ADRF5715 are decoupled with 100 pF capacitor.

Table 1. Power Supply and Control Inputs

Test Point	Description
VDD	+3.3 V supply voltage
VSS	-3.3 V supply voltage
D0	Control Input 1

RF INPUTS AND OUTPUTS

The ADRF5715-EVALZ has four edge-mounted, 2.92 mm connectors for the RF inputs and outputs, as shown in Table 2.

Table 2. RF Inputs and Outputs

SMA Connector	Description
ATTIN	Attenuator input
ATTOUT	Attenuator output
THRU1	Thru line input and output
THRU2	Thru line input and output

The ADRF5715-EVALZ is shipped together with a thru line that calibrates out the board loss effects from the measurements determining the device performance at the pins of the IC.

TEST PROCEDURE

BIASING SEQUENCE

To bias up the ADRF5715-EVALZ, perform the following steps.

- 1. Ground the GND test point.
- 2. Bias up the VDD test point.
- 3. Bias up the VSS test point.
- 4. Bias up the D0 test point.
- 5. Apply an RF input signal.
- The ADRF5715-EVALZ is shipped fully assembled and tested. Figure 3 provides a basic test setup diagram to
 evaluate the s-parameters using a network analyzer.
- Perform the following steps to complete the test setup and verify the operation of the ADRF5715-EVALZ:
- 1. Connect the GND test point to the ground terminal of the power supply.
- 2. Connect the VDD test point to the voltage output terminal of the 3.3 V supply.
- 3. Connect the VSS test point to the voltage output terminal of the -3.3 V supply. Note that the current from the VDD test point is around 130 μ A and from the VSS test point is around 500 μ A.
- 4. Connect the D0 test point to the voltage output terminal of the 3.3 V supply. The ADRF5715 can be configured in different modes by connecting the control test points to 3.3 V or 0 V, as shown in Table 3.
- 5. Connect a calibrated network analyzer to the ATTIN and ATT-OUT 2.92 mm connectors. Sweep the frequency from 100 MHz to 30 GHz and set the power to 10 dBm.
- 6. The ADRF5715-EVALZ is expected to have an insertion loss of 1.15 dB at 30 GHz. See the expected results in Figure 4.
- Additional test equipment is needed to fully evaluate the device's functions and performance.
- For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high-isolation power combiner is also recommended.
- For power compression and power handling evaluations, use a 2-channel power meter and a signal generator.
- A high enough power amplifier is also recommended at the input. Test accessories, such as couplers and attenuators, must have enough power handling.
- Note that the measurements performed at the 2.92 mm connectors of the ADRF5715-EVALZ include the losses of the 2.92 mm connector and the PCB.
- The thru line must be measured to calibrate out the effects on the ADRF5715-EVALZ. The thru line is the summation of an RF input line and an RF output line that is connected to the device and equal in length.

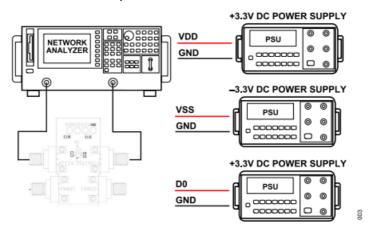


Figure 3. Test Setup Diagram

D0	Attenuation State (dB)	
Low	0 (reference)	
High	16	

TEST PROCEDURE

EXPECTED RESULTS

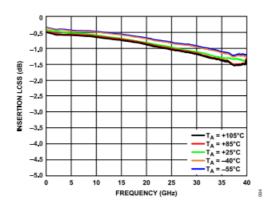


Figure 4. Insertion Loss vs. Frequency over Various Temperatures

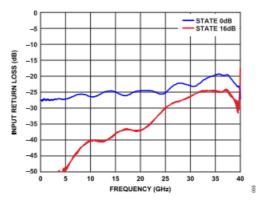


Figure 5. Input Return Loss vs. Frequency

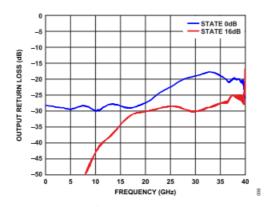


Figure 6. Output Return Loss vs. Frequency

EVALUATION BOARD SCHEMATIC AND ARTWORK

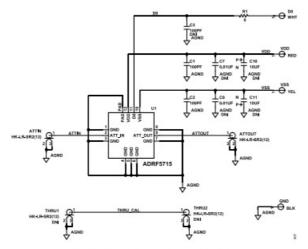


Figure 7. ADRF5715-EVALZ Evaluation Board Schematic

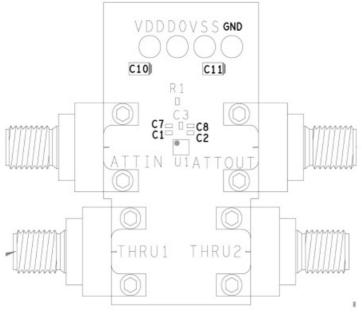


Figure 8. ADRF5715-EVALZ Evaluation Board Assembly Diagram

ORDERING INFORMATION

BILL OF MATERIALS

Table 4. Bill of Materials for ADRF5715-EVALZ

quality resolution beorginates becomption manufactures rate ratinger	Quantity Refe	erence Designator	Description	Manufacturer	Part Number
--	---------------	-------------------	-------------	--------------	-------------

2	C1 and C2	Capacitors, 100 pF, 50 V, C0402 pack age	Murata	GCM1555C1H1 01JA16D
1	R1	Resistors, 0 Ω, 1/10 W, R0402 packag e	Yageo	RC0402JR-070 RL
2	ATTIN and ATTOUT	Surface-mount test points	Hirose Electro nic Co.	HK-LR-SR2(12)
4	D0, GND, VDD, and VSS	Surface-mount test points	Components	TP-104-01-0X
			Corporation	
1	U1	Silicon digital attenuator, 1-bit, 1 MHz to 30 GHz	Analog Device s, Inc.	ADRF5715
1	PCB	ADRF5715 evaluation board	Analog Device s	ADRF5715-EVA LZ

ESD Caution

- ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection.
- Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high-energy ESD.
- Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board, and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates, and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. The customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customers may not disassemble, decompile, or reverse engineer chips on the Evaluation Board. The customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. The customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY

REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS, OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. The customer agrees that it will not directly or indirectly export the Evaluation Board to another country and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed under the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887-2356, U.S.A <u>analog.com</u>

Documents / Resources

ANALOG DEVICES ADRF5715-EVALZ Silicon Digital Attenuator [pdf] User Guide ADRF5715-EVALZ Silicon Digital Attenuator, ADRF5715-EVALZ, Silicon Digital Attenuator, Digit al Attenuator

References

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.