ams TCS3410 Universal Ambient Light RGB Sensor with Selective Flicker Detection User Guide Home » ams » ams TCS3410 Universal Ambient Light RGB Sensor with Selective Flicker Detection User Guide User Guide UG000504 TCS3410 TCS3410 EVM Universal Ambient Light RGB Sensor with Selective Flicker Detection # **Contents** - 1 Introduction - 2 Getting Started - **3 Hardware Description** - **4 Software Description** - **5 Resources** - **6 Revision Information** - 7 Legal Information - 8 Documents / - Resources - 9 Related Posts # Introduction The TCS3410 evaluation kit comes with everything needed to evaluate the TCS3410. The device features digital ambient light sensing (ALS) and flicker detection. # 1.1 Kit Contents Figure 1: **Evaluation Kit Contents** | No | Item | Description | |----|-------------------------|---------------------------------------------| | 1 | TCS3410 Daughter Card | PCB with TCS3410 sensor installed | | 2 | EVM Controller Board | Used to communicate USB to I2C | | 3 | USB Cable (A to Mini-B) | Connects EVM controller to PC | | 4 | Flash Drive | Include application installer and documents | # 1.2 Ordering Information | Ordering Code | Description | |---------------|------------------------------------------------------------------------------| | TCS3410 EVM | TCS3410 Universal Ambient Light RGB Sensor with S elective Flicker Detection | # **Getting Started** The software should be installed prior to connecting any hardware to the computer. Follow the instructions found in the Quick Start Guide (QSG). This loads the required driver for the USB interface and the device's graphical user interface (GUI). The balance of this document identifies and describes the controls available on the GUI. In combination with the TCS3410 datasheet, the QSG, and application notes available on the AMS website, www.ams.com, there should be enough information to allow evaluation of the TCS3410 device. # **Hardware Description** The hardware consists of the EVM Controller, the TCS3410 EVM daughtercard, and a USB interface cable. The EVM controller board provides power and I2C communication to the daughter card through a seven-pin connector. When the EVM controller is connected to the PC through USB, a green LED on the board flashes once on power up to indicate the system is getting power. For schematics, layout, and BOM information please see the documents included with the install located in the TCS3410 EVM folder (All Programs -> ams -> TCS3410 EVM -> Documents). Figure 2: Evaluation Kit Hardware # **Software Description** The main window (Figure 3) contains the system menus, system-level controls, device information, and logging status. The Configuration tab contains controls to set up both ALS and Flicker detection parameters. Both ALS tab and SW Flicker tab display ALS data, Flicker data, and Mod Gain data. The ALS tab contains a plotting area in which raw ALS data is drawn. The SW Flicker tab contains a plotting area in which the flicker raw data and flicker frequency after FFT calculation are drawn. The application polls the ALS and flicker raw data continuously and calculates flicker frequency values. Figure 3: GUI Main Window #### 4.1 Connect Software to Hardware On startup, the software automatically connects to the hardware. On successful initialization, the software displays the main window, containing controls pertinent to the connected device. If the software detects an error, an error window appears. If "Device not found or is unsupported" appears, verify the correct daughterboard is properly connected to the EVM controller board. If "Cannot connect to EVM board" appears, verify the USB cable is connected. When the EVM controller board is connected to the USB, a green LED on the board flashes once on power up to indicate the USB cable is connected and providing power to the system. If the EVM board disconnects from the USB bus while the program is running, it displays an error message and then terminates. Reconnect the EVM board and restart the program. #### 4.2 System Menus At the top of the window, there are pull-down menus labeled "File", "Log", and "Help". The File menu provides basic application-level control. The Log menu controls the logging function, and the Help menu provides version and copyright information for the application. # 4.2.1 File Menu The File menu contains the following functions: Figure 4: File Menu The Reread Registers function forces the program to re-read all of the control registers from the device and display them on the screen. This does not read the output data, because the program reads those registers continually while it is running. # 4.2.2 The Lux Coefficients menu allows the user to Display, Load, or Save the lux coefficients used to calculate lux. See Gains Group Box In this group box, there is the 9 gain value matrix for modulator 0/1/2 and step0/1/2. section for more details. Click on the Exit command to close the main window and terminate the application. Any unsaved log data is cleared from memory. The application can also be closed by clicking the red "X" in the upper right hand corner. #### 4.2.3 Log Menu The Log menu controls the logging function and saves the log data to a file. Log data accumulates in memory until discarded or written to a data file. Figure 5: Log Menu Click Start Logging to start the logging function. Each time the program polls the output information from the device, it creates a new log entry showing the raw data values, the values of various control registers, and the values entered by the user into the text fields near the bottom right corner of the window. Click Stop Logging to stop the logging function. Once logging stops, the user may store the data in a file, or continue collecting additional data by clicking Start Logging again. The Log a Single Entry command causes logging to start, collect one single entry, and immediately stop again. This function is not available when logging is already running. Click Clear Log to discard any previously collected data. If there is data in memory, which has not been saved to disk, this function displays a prompt asking to verify it is OK to discard the data. If the log is active when this function executes, the log continues running after the existing data is discarded. Click Save Log to save the collected log data to a CSV file. This stops the logging function, if it is active, and displays a file dialog box to specify where to store the logged data. The Log Status and Control Information section below describes the default file name, but you may change the file name if desired. # 4.2.4 Help Menu The Help menu contains a single function: About. Figure 6: Help Menu The About function displays a dialog box (Figure 7) showing the version and copyright information for the application and library. Click the OK button to close this window and continue. Figure 7: About Window # 4.3 System Level Controls Immediately below the top menu bar, there are checkboxes used to control the system-level functions of the TCS3410 device. The Power On checkbox controls the PON function of the TCS3410. When this box is checked, the power is on and the device is running measurements according to the settings in the Configuration tab. At this time, the Configuration tab is disabled to prevent users to change the settings while the measurement is ongoing. When this box is unchecked, the power is off and the device does not operate. The Configuration tab is enabled and you can change the controls to set up the parameters for the next running. # 4.4 Auto Polling The application automatically polls the TCS3410 raw data of ALS and Flicker if enabled. The **Poll** interval at the right upper corner of the form displays the actual time between reads of the device. The control "Poll Interval" in the middle bottom of the form lets the user set the desired polling interval. #### 4.5 Device ID Information The lower-left corner of the window displays the ID number of the EVM Controller board, identifies the device being used, and displays the ID of the device. # 4.6 Log Status and Control Information The lower right corner of the window contains status information and controls for the logging function: Figure 8: Logging Status This section contains text boxes that are stored in the log file data and used to build the file name for the log file. If the data in these fields are changed, the new values are stored with any new data logged. The default file name is based on these values at the time the log file is written. If nothing is entered in these boxes they default to a period ("."). # Sample default file name: TCS3410_1-2-3_Log_HH_MM_SS.csv From Application From User Input The Count value displayed is a count of the number of samples currently in the log buffer. The Elapsed Time value indicates the elapsed time since data logging started. The numeric box in the bottom right-hand corner sets a limit to the size of the collected dataset. You may select a value from the pull-down list, or enter a value manually. When the number of entries in the log reaches this value, the program will automatically stop logging and display a file dialog box to specify where to store the logged data. You may change the file name if desired. The maximum value that may be entered in this field is 32000. # 4.7 "Configuration" Tab The main portion of the screen contains a tab labeled Configuration. Figure 9: Configuration Tab # 4.7.1 Configuration Controls The **SAMPLE TIME** control sets the time of one flicker measurement. It also defines the measurement time of the step for ALS measurements. The Flicker group box contains controls relating the flicker detection: - Flicker Enable control enables the flicker detection if checked. - FD Data Width control sets the width of the compressed flicker data in the FIFO. The values are from 1 to 15. - FD NR SAMPLES control defines the number of samples for one flicker measurement. • FD Measurement Time control displays the integration time for one flicker measurement. The **ALS** group box contains controls relating the flicker detection: - ALS Enable control enables ALS detection if checked. - ALS_NR_SAMPLES control defines the number of samples for one ALS measurement. - ALS Integration Time control displays the integration time for one ALS measurement. The **Calibration** group box contains the following controls: - CALIB_NTH_ITERATION control sets the repeat rate of calibration execution in measurement sequencer rounds. The values are from 0 to 255. - Autozero at nth iteration check box enables auto-zero calibration during nth iteration calibration if checked. - OSC_CALIB control defines calibration mode. The available options are "0 disabled", "1 after pon", and "2 always-on". - At VSYNC Frequency sets VSYNC frequency. The available values are 60HZ, 90HZ, and 120HZ. The **Gains** group box contains controls to setup all gains: - The common Gain check box if checked will set all the channels to the same gain. - All Channels dropdown combo box sets the gain for all channels if the check box Common Gain is checked. The choices are 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, 128x, 256x, 512x, 1024x, 2048x, 4096x and 8192x. - Max Gain dropdown combo box sets the max gain for all channels if the check box Common Gain is checked. The choices are 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, 128x, 256x, 512x, 1024x, 2048x, 4096x and 8192x. - Gain at Channel 0/1/2 and Step 0/1/2 dropdown combo box sets the gain for channel 0/1/2 at step 0/1/2 if the check box Common Gain is unchecked. The choices are 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, 128x, 256x, 512x, 1024x, 2048x, 4096x and 8192x. - Gain at Channel 0 and step 3 sets the gain for channel 0 at step 3, which is for flicker detection. - AGC group box has two checkboxes. One is the check box Prediction for enabling the predict AGC function for all steps of the sequence if checked. Another one Saturation check box enables analog saturation AGC if checked. - The **residual** check box enables a residual measurement on modulator 0 if checked. The time group box contains controls relating to the wait function: - MOD_TRIGGER_TIMMING defines the repeat rate of modulator/sequencer measurements. The available selections are "0 off", "1 normal = 2.84 ms", "2 long =45.51 ms", "3 fast = 88.89 us", "4 fast long =1.42 ms", "5 syncs", "6 reserved0" and "7 reserved1". - WTIME specifies the time to wait between measurement steps. The values are from 0 to 255. The AGC Time group box contains controls to set up the AGC time: - AGC_NR_SAMPLES defines the number of samples for every AGC measurement. The values are from 0 to 65535. - AGC Integration Time displays the AGC integration time. #### 4.8 "ALS" Tab The main portion of the screen contains a tab labeled ALS. It displays measurement data. # Figure 10: ALS Tab # 4.8.1 ALS Group Box The left upside of the ALS tab displays the ALS measurement data. The flowing items are displayed: - The ALS Integration Time. - · Clear data counts. - · Red data counts. - · Green data counts. - · Blue data counts. - Wide Band data counts. - Clear data Saturation status: Green color means no saturation happened. Red otherwise. - Red data Saturation status: Green color means no saturation happened. Red otherwise. - Green data Saturation status: Green color means no saturation happened. Red otherwise. - Blue data Saturation status: Green color means no saturation happened. Red otherwise. - Wide Band data Saturation status: Green color means no saturation happened. Red otherwise. - Lux: Lux calculation is not implemented in the GUI. - Gain: Normalized Gain value. It's actually gained a value of channel 0 in step 0 for clear data detection. The Tune radio buttons: the purpose of this set of radio buttons is to avoid the plotting graph values jumping dramatically due to the AGC effect of different normalized gain values applied when measuring. The displayed data is the measurement data ratio when normalized gain has the selected value (of the radio button). # 4.8.2 Flicker Sampling Group Box The flowing items display in the Flicker Sampling group box: - · Sampling Time. - Sampling Frequency. - FD_GAIN. - Flicker Frequency1, which has the biggest FFT value. - Flicker Frequency2, which has the second biggest FFT value. - Flicker Frequency3, which has the third biggest FFT value. # 4.8.3 Gains Group Box In this group box, there is the 9 gain value matrix for modulator 0/1/2 and step0/1/2. # 4.8.4 ALS Data Plot The remaining portion of the ALS tab is used to display a running plot of the collected ALS values and calculated Lux. The last 350 values are collected and plotted on the graph. As additional values are added, the old values will be deleted from the left side of the graph. To start the plotting function, check the **Enable Plot** checkbox and select the **ALS**, **IR**, **or Lux** checkboxes. Figure 11: ALS Data Plot The scale of the Y-axis of the plot can be adjusted by clicking on the small up and down arrows at the top left corner of the plot. The scale can be set to any power of 2 from 64 through 65536. Click the **Clear Plot** button to discard the current data and continue plotting the new data. Note if the Clear Plot button is clicked while the plot is disabled, the data is discarded, but the actual plot will not be updated until the plot function is re-enabled. # 4.9 "SW Flicker" Tab The main portion of the screen contains a tab labeled SW Flicker Figure 12: SW Flicker Tab # 4.9.1 Flicker Information The left side of the SW Flicker tab displays the ALS and Flicker information same as those in the ALS tab. See the "ALS Tab" section for detailed information. # 4.9.2 Flicker Output Data The top right portion of the SW Flicker tab displays plot of the original flicker data and the data after FFT. Besides, The peak Flicker Frequency, the compression rate is also displayed there. Figure 13: SW Flicker Data Plot The scale of the Y-axis of the plot can be adjusted by clicking on the small up and down arrows at the top left corner of the plot. The scale can be set to any power of 2 from 16 to 16384. Click the **Clear Plot** button to discard the current data and continue plotting the new data. Note if the Clear Plot button is clicked while the plot is disabled, the data is discarded, but the actual plot will not be updated until the plot function is re-enabled. #### Resources For additional information regarding the TCS3410, please refer to the datasheet. For information regarding the installation of the TCS3410 EVM host application software please refer to the TCS3410 EVM Quick Start Guide. Designer's Notebooks dealing with various aspects of optical measurement and optical measurement applications are available. All content is available on the AMS website www.ams.com. For further information, please refer to the following documents: - TCS3410 Datasheet - TCS3410 EVM Quick Start Guide (QSG) - TCS3410 EVM User's Guide (this document) - TCS3410 EVM Schematic Layout # **Revision Information** | Changes from the previous version to current revision v1-00 | Page | |-------------------------------------------------------------|------| | Initial version | | | | | - Page and figure numbers for the previous version may differ from page and figure numbers in the current revision - Correction of typographical errors is not explicitly mentioned. # **Legal Information** # **Copyrights & Disclaimer** Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. Demo Kits, Evaluation Kits, and Reference Designs are provided to the recipient on an "as is" basis for demonstration and evaluation purposes only and are not considered to be finished end-products intended and fit for general consumer use, commercial applications, and applications with special requirements such as but not limited to medical equipment or automotive applications. Demo Kits, Evaluation Kits, and Reference Designs have not been tested for compliance with electromagnetic compatibility (EMC) standards and directives unless otherwise specified. Demo Kits, Evaluation Kits, and Reference Designs shall be used by qualified personnel only. AMS AG reserves the right to change the functionality and price of Demo Kits, Evaluation Kits, and Reference Designs at any time and without notice. Any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed. Any claims and demands and any direct, indirect, incidental, special, exemplary, or consequential damages arising from the inadequacy of the provided Demo Kits, Evaluation Kits, and Reference Designs or incurred losses of any kind (e.g. loss of use, data, or profits or business interruption however caused) as a consequence of their use are excluded. AMS AG shall not be liable to the recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services. #### **RoHS Compliant & ams Green Statement** RoHS Compliant: The term RoHS compliant means that AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes. AMS Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl does not exceed 0.1% by weight in homogeneous material). **Important Information:** The information provided in this statement represents ams AG's knowledge and belief as of the date that it is provided. AMS AG bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. AMS AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. AMS AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Headquarters ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe Tel: +43 (0) 3136 500 0 Please visit our website at www.ams.com Buy our products or get free samples online at www.a ms.com/Products Technical Support is available at <u>www.ams.com/Technical-Support</u> Provide feedback about this document at www.ams.c om/Document-Feedback For sales offices, distributors and representatives go to www.ams.com/Contact For further information and requests, e-mail us at ams sales@ams.com Eval Kit Manual • PUBLIC UG000504 • v1-00 • 2020-Nov-03 # **Documents / Resources** ams TCS3410 Universal Ambient Light RGB Sensor with Selective Flicker Detection [pdf] User Guide UG000504, TCS3410, Universal Ambient Light RGB Sensor with Selective Flicker Detection Manuals+,