Manuals+ — User Manuals Simplified.

dMason

Login with Amazon Getting Started Guide for Android

Home » Amazon » Login with Amazon Getting Started Guide for Android ™

Login with Amazon Getting Started Guide for Android
_ogin withamazon
]

Login with Amazon: Getting Started Guide for Android

Copyright © 2016 Amazon.com, Inc., or its affiliates. All rights reserved. Amazon and the Amazon logo are
trademarks of Amazon.com, Inc. or its affiliates. All other trademarks not owned by Amazon are the property of
their respective owners.

Contents

1 Getting Started for Android

2 Installing the Android Developer Tools
2.1 Install the Login with Amazon SDK for Android
2.2 Run the Sample App

3 Registering with Login with Amazon
3.1 Register Your Login with Amazon Application
3.2 Register Your Android App

4 Add an Android App for Amazon Appstore

5 Android App Signatures and API Keys
5.1 Determine the Android App Signature
5.2 Retrieve the Android API Key

6 Creating a Login with Amazon Project
6.1 Create a New Login with Amazon Project
6.2 Install the Login with Amazon Library
6.3 Set Network Permissions for Your App
6.4 Add Your API Key to Your Project
6.5 Handle Configuration Changes for Your Activity
6.6 Add an Authorization Activity to Your Project
6.7 Add a Login with Amazon Button to Your App
6.8 Handle the Login Button and Get Profile Data
6.9 Check for User Login at Startup
6.10 Clear Authorization State and Log Out a User
6.11 Call AmazonAuthorizationManager Methods
Synchronously

7 Related Posts

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/amazon
https://manuals.plus/amazon/login-with-amazon-getting-started-guide-for-android.pdf

Getting Started for Android

In this guide we will show you how to add Login with Amazon to your Android app. After completing this guide you
should have a working Login with Amazon button in your app to allow users to log in with their Amazon
credentials.

Installing the Android Developer Tools

The Login with Amazon SDK for Android will help you add Login with Amazon to your Android application. We
recommend you use the Login with Amazon SDK for Android from developer.amazon.com with Android Studio.
You can however also use the Eclipse with ADT plugin. For steps on how to install Android Studio and on getting
the Android SDK set up, see Get the Android SDK on developer.android.com.

When the Android SDK is installed, find the SDK Manager application in your Android installation. To develop for
Login with Amazon, you must use the SDK Manager to install the SDK Platform for Android 2.2 or higher (API
version 8). See Adding SDK Packages on developer.android.com for more information on using SDK

After installing the SDK, set up an Android Virtual Device (AVD) for running your apps. See Managing Virtual
Devices on developer.android.com for instructions on setting up a virtual device.

When your development environment is set up, you can Install the Login with Amazon SDK for Android or Run the
Sample App, as described below.

Install the Login with Amazon SDK for Android

The Login with Amazon SDK for Android comes in two packages. The first contains the Android library and
supporting documentation. The second contains a sample application that allows a user to log in and displays
their profile data.

If you have not already installed the Android SDK or the Android Development Tools, see the Installing the
Android Developer Tools section above.

1. Download zip and extract the files to a directory on your hard drive.
You should see a doc and a lib subdirectory.

2. Open doc/index.html to view the Login with Amazon Android API

3. See Install the Login with Amazon Library , for instructions on how to add the library and documentation to an
Android

When the Login with Amazon SDK for Android is installed, you can Create a New Login with Amazon
Project, after Registering with Login with Amazon .

Run the Sample App

To run the sample application, import the sample into an AndroidStudio workspace (if you are using Eclipse, you
must also add a custom debug keystore to the workspace. See the Add the Custom Debug Keystore in Eclipse
section below). The API Key that the sample application uses requires the workspace to use the keystore that
ships with the sample. If the custom keystore is not installed, users will not be able to log in using the sample. The
keystore will be picked up automatically if you are using AndroidStudio.

1. Download SampleLoginWithAmazonAppForAndroid-src.zip and extract the files to a directory on your hard
2. Start Android Studio and select Open an existing Android Studio project

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/adding-packages.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/devices/index.html
https://images-na.ssl-images-amazon.com/images/G/01/lwa/sdk/LoginWithAmazonSDKForAndroid._TTH_.zip
https://images-na.ssl-images-amazon.com/images/G/01/lwa/samples/SampleLoginWithAmazonAppForAndroid-src._TTH_.zip

3. Browse to the SampleLoginWithAmazonApp directory obtained after extracting the downloaded zip file in
Step

4. From the Build menu, click Make Project, and wait for the project to

5. From the Run menu, click Run and then click the SampleLoginWithAmazonApp.

6. Select the emulator or connected Android device and click Run.

Add the Custom Debug Key store in Eclipse

If you are using Eclipse, follow the instructions below to add the custom debug keystore:

1. In the Preferences dialog, select Android and Build.
2. Next to Custom Debug Keystore, click Browse.
3. Navigate to the sample app directory and select 3p.keystore, and then click OK.

Registering with Login with Amazon

Before you can use Login with Amazon on a website or in a mobile app, you must register an application with
Login with Amazon. Your Login with Amazon application is the registration that contains basic information about
your business, and information about each website or mobile app you create that supports Login with Amazon.
This business information is displayed to users each time they use Login with Amazon on your website or mobile
app. Users will see the name of your application, your logo, and a link to your privacy policy. These steps
demonstrate how to register a Login with Amazon application and add an Android app to that account.

See the following topics:

» Register Your Login with Amazon Application
» Register Your Android App
o Add an Android App for Amazon Appstore
o Add an Android App Without Appstore
« Android App Signatures and APl Keys
o Determining an Android App Signature
o Retrieving an Android APl Key

Register Your Login with Amazon Application

1. Go to hitps:/login.amazon.com.
2. If you have signed up for Login with Amazon before, click App Console. Otherwise, click Sign Up. You will be

redirected to Seller Central, which handles application registration for Login with If this is your first time using
Seller Central, you will be asked to set up a Seller Central account.

3. Click Register New Application. The Register Your Application form will appear:

https://login.amazon.com/

Application Informalics

Hamis |
Dasscription
Prvacy Moboe URL

Logo Image Browss

a. In the Register Your Application form,
enter a Name and a Description for your application.
The Name is the name displayed on the consent screen when users agree to share information with your
application. This name applies to Android, iOS, and website versions of your application.
b. Enter a Privacy Notice URL for your application
The Privacy Notice URL is the location of your company’s or application’s privacy policy (for example,
http://www.example.com/privacy.html). This link is displayed to users on the consent screen.
c. If you want to add a Logo Image for your application, click Browse and locate the applicable image.
This logo is displayed on the sign-in and consent screen to represent your business or website. The logo will
be shrunk to 50 pixels in height if it is taller than 50 pixels; there is no limitation on the width of the logo

4. Click Save. Your sample registration should look similar to this:

Tappas|

App [D: amenl application.c46324c5d0T 44842 aT 59fediS0baafas

Application Information

Hams LaDpos. com
Desiriplean Powered by Sannce
Prrsacy Mobce URL: hittp://www . rappos comiprivacy-policy

Logo Image:) g

3 Web Sellings
3 hndrodd Settings

2 0% Sattings

After your basic application settings are saved, you can add settings for specific websites and mobile apps that

will use this Login with Amazon account.
Register Your Android App

To register an Android App, you have the choice of registering an app through the Amazon Appstore (Add an
Android App for Amazon Appstore, p. 8) or directly with Login with Amazon (Add an Android App Without
Appstore, p. 9). When your app is registered, you will have access to an API key that will grant your app access to
the Login with Amazon authorization service.

Note: If you plan to use Amazon Device Messaging within your Android app, please contact Iwa-

support@amazon.com with:

http://www.example.com/privacy.html)
mailto:lwa-support@amazon.com
mailto:lwa-support@amazon.com

The email address of the Amazon account you used to sign up for Login with Amazon.

The email address of the Amazon account you used to sign up for the Amazon Appstore (if different).

The name on your Seller Central account. (On Seller Central, click Settings > Account Info > Seller
Information, and use the Display Name).

The name on your Amazon Appstore developer account. (On the Mobile App Distribution site, click Settings >

Company Profile and use the Developer Name or Company Name).

Add an Android App for Amazon Appstore

The following steps will add an Amazon Appstore app to your Login with Amazon account:

1. From the Application screen, click Android Settings. If you already have an Android app registered, look for

the Add API Key button in the Android Settings
The Android Application Details form will appear:

2. Select Yes in answer to the question “Is this application distributed through the Amazon Appstore?”

3. Enter the Label of your Android App. This does not have to be the official name of your app. It simply identifies

this particular Android app among the apps and websites registered to your Login with Amazon application.

4. Add your Amazon Appstore ID.

5. If you self-signed your app, add self-signing information. This will allow you to obtain an API key during

development without using the Appstore directly:

a. If your app is not being signed through the Amazon Appstore, select Yes in answer to the question “Is this
application self-signed?”

The Android Application Details form will expand:

Finvdrosd St limg
Aredroad Applicalion Dvlasly
Is thes apphcabon disinbuted through Bhe Amaeon Sppstore? T
Lt Eapooe.com {amapben Apeslore
Rppalers App [T
Is this appbcaton sefl agned? Fias o

Eearm ml Havw

b. Enter your Package Name.

This must match the package name of your Android project. To determine the package name of your Android
Project, open the project in your choice of Android developer tool.

Open AndroidManifest. XML in Package Explorer and select the Manifest tab. The first entry is the Package
name.

c. Enter the app Signature.

This is a SHA-256 hash value used to verify your application. The signature must be in the form of 32
hexadecimal pairs separated by colons (for example:
01:23:45:67:89:ab:cd:ef:01:23:45:67:89:ab:cd:ef:01:23:45:67:89:ab:cd:ef:01: 3:45:67:89:a b:cd:ef). See
Android App Signatures and API Keys for steps you can use to extract the signature from your project.

6. Click Save.

If different versions of your app have different signatures or package names, such as for one or more testing
versions and a production version, each version requires its own API Key. From the Android Settings of your
app, click the Add API Key button to create additional keys for your app (one per version).

Android App Signatures and API Keys

The app signature is a SHA-256 hash value that is applied to every Android app when it is built. Amazon uses the
app signature to construct your APl Key. The API Key enables Amazon services to recognize your app. If you use
the Amazon Appstore to sign your app, the API key is provided automatically. If you are not using the Amazon
Appstore, you will need to manage your APl key manually.

App signatures are stored in a keystore. Generally, for Android apps there is a debug keystore and a release
keystore. The debug keystore is created by the Android Development Tools plugin for Eclipse and is used by
default. You can find the location of the debug keystore in Eclipse by clicking Window, and then selecting
Preferences > Android > Build. From that screen you can also add your own debug keystore. For Android
Studio, from the Build menu, select Edit Build Types, then go to the Signing tab, and locate the debug keystore
in the Store File field.

A release keystore is normally created when you export your Android app to create a signed APK file.
Through the export process, if you are creating a new release keystore you will select its location. By
default it will be placed in the same location as your default debug KeyStore.

If you have registered your app using the debug signature during development, you will have to add a new
Android setting to your application when you are ready to release the app. The new app setting must use the
signature from the release keystore.

See Signing Your Applications on developer.android.com for more information.

Determine the Android App Signature

1. If you have a signed APK file:
a. Unzip the APK file and extract CERT.RSA. (You can rename the APK extension to ZIP if necessary).

b. From the command line, run:

keytool -printcert -file CERT.RSA

Keytoolis located in the bin directory of your Java installation.

2. If you have a keystore file:

a. From the command line, run:

keytool -list -v -alias <alias> -keystore <keystore.filename>

Keytool is located in the bin directory of your Java installation. The alias is the name of the key used to sign the

app.
b. Enter the password for the key and press Enter.

3. Under Certificate Fingerprints, copy the SHA256 value.

http://developer.android.com/tools/publishing/app-signing.html

Retrieve the Android API Key

When you have registered an Android setting and provided an app signature, you can retrieve the API key from
the registration page for your Login with Amazon application. You will need to place that API key into a file in your
Android project. Until you do, the app will not be authorized to communicate with the Login with Amazon
authorization service.

Go to https://login.amazon.com.

Click App Console.

In the Applications box at left, select your

> w D=

Find your Android app under the Android Settings (If you have not yet registered an Android app, see Add an
Android App for Amazon Appstore).

5. Click Generate API Key Value. A popup window will display your API key. To copy the key, click Select All to
select the entire

Note: The API Key Value is based, in part, on the time it is generated. Thus, subsequent API Key Value(s) you
generate may differ from the original. You can use any of these API Key Values in your app as they are all
valid.

6. See Add Your API Key to Your Project for instructions on adding the API key to your Android

Creating a Login with Amazon Project

In this section, you will learn how to create a new Android project for Login with Amazon, configure the project,
and add code to the project to sign in a user with Login with Amazon. We will be describing the steps for Android
Studio, but you can apply analogous steps to any IDE or Android development tool of your choice.

See the following topics:

« Create a New Login with Amazon Project
« Install the Login with Amazon Library
o Enable Content Assist for the Login with Amazon Library
« Set Network Permissions for Your App
» Add Your API Key to Your Project
o Remove the Sample App Custom Debug Keystore
« Handle Configuration Changes for Your Activity
o Add an Authorization Activity to Your Project
o Add a Login with Amazon Button to Your App
« Handle the Login Button and Get Profile Data
o Check for User Login at Startup
» Clear Authorization State and Log Out a User
» Call Amazon Authorization Manager Methods Synchronously

Create a New Login with Amazon Project

If you do not yet have an app project for using Login with Amazon, follow the instructions below to create one. If
you have an existing app, skip to Install the Login with Amazon Library .

https://login.amazon.com/

Launch Android Development Tool.
From the File menu, select New and Project.

Enter an Application Name and Company Name for your

A w0 v

Enter the Application and Company Name corresponding to the package name that you chose when you
registered your app with Login with Amazon.

If you haven't registered your app yet, choose a Package Name and then follow the instructions in the

Registering with Login with Amazon section after you create your project. If the package name of your app
does not match the registered package name, your Login with Amazon calls will not succeed.

5. Select a Minimum Required SDK of API 8: Android 2 (Froyo) or higher, and click Next.

6. Select the type of activity you want to create and click Next.

7. Fill in the relevant details and click Finish.

You will now have a new project in your workspace that you can use to call Login with Amazon.

Install the Login with Amazon Library

If you have not yet downloaded the Login with Amazon SDK for Android, see Install the Login with Amazon SDK
for Android (p. 4).

1. With your project open in Android Developer Tools, in Project Explorer, right-click your Project.

2. If a folder called libs is not already present, create

3. Copy the login-with-amazon-sdk.jar file from the File System, and then paste it in the libs directory under
your project/app.

4. Right-click login-with-amazon-sdk.jar, and check the Add As Library

Enable Content Assist for the Login with Amazon Library in Eclipse

To enable the Eclipse content assist support in an Android project requires using a .properties file. For more
information on content assist, see Content/Code Assist onhelp.eclipse.org.

To enable the Eclipse content assist support in an Android project requires using a .properties file. For more
information on content assist, see Content/Code Assist onhelp.eclipse.org.

1. In Windows Explorer, navigate to the docs folder for the Login with Amazon SDK for Android and copy the
folder to the

2. With your project open, go to Package Explorer and select the libs Click Edit from the main menu and select
Paste. You should now have a libs\docs directory.

3. Select the libs Click File from the main menu and select New andFile.

4. In the New File dialog, enter login-with-amazon-sdk.jar.properties and click Finish.

5. Eclipse should open login-with-amazon-sdk.jar.properties in the text editor. In the text editor, add the

following line to the file:

doc=docs

6. From the File menu, click Save.

7. You may need to restart Eclipse for the changes to take effect

https://help.eclipse.org/2021-03/index.jsp?topic=%252Forg.eclipse.jdt.doc.user%252Freference%252Fref-java-editor-code-assist.htm&%253Bamp%253Bcp=1_4_8_0

Set Network Permissions for Your App

In order for your app to use Login with Amazon, it must access the Internet and access network state information.
Your app must assert these permissions in your Android manifest, if it doesn’t already.

NOTE: The procedure steps below are specific to adding the permissions in Eclipse. If you are using Android
Studio or a different IDE, you can skip all of the numbered steps below. Instead, copy the lines of code displayed
below the screenshot, and paste them into the AndroidManifest.xml file, outside of the application block.

In Package Explorer, double-click xml.

On the Permissions tab, click Add.

Select Uses Permission and click OK.

To the right of Permissions, find the Attributes for Uses Permission

In the Name box, enter permission. INTERNET or select it from the drop-down.

On the Permissions tab, click Add

Select Uses Permission and click OK.

In the Name box, enter permission.ACCESS_NETWORK_STATE or select it from the drop-down

From the File menu, click Save.

© o N o o M 0w D=

Your manifest permissions should now have the following values:
SampleLogemiWithAmacondpp Maredesl

Android Manifest Permissions

Permissions [P (O (F] 4P e
™ an = i NTERS Fermission
ancirokd pormissionNTERMET Uses Permissic Add
s android permissionACCESS_NETWORK_STATE (Uses Parmissic

Tl hlanidest (K] Application | [F] Permissions | [T) lnstrementation| = Androidbanifestam

In the AndroidManifest.xml tab, you should now see these entries under the manifest element:

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

Add Your API Key to Your Project

When you register your Android application with Login with Amazon, you are assigned an APl key. This is an
identifier that the Amazon Authorization Manager will use to identify your application to the Login with Amazon
authorization service. If you are using the Amazon Appstore to sign your app, the Appstore will provide the API
key automatically. If you are not using the Amazon Appstore, the Amazon Authorization Manager loads this value
at runtime from the api_key.txt file in the assets directory.

1. If you do not have your API Key yet, follow the instructions in Retrieve the Android API Key (p. 11).

2. With your ADT project open, from the File menu, click New and select Untitled Text File. You should now have
an editor window for a text file named Untitled 1. Add your API key to the text
3. From the File menu, click Save As.

4. In the Save As dialog, select the assets directory of your project as the parent folder. For File name, enter txt.

Remove the Sample App Custom Debug Keystore

NOTE: This step is required only if you are using Eclipse; if you are using Android Studio, skip this section.

If you installed the Login with Amazon for Android sample application into the same workspace you are using for
your Android app, you may have a custom debug keystore set for the workspace. You need to clear the custom
debug keystore in order to use your own API key.

1. From the main menu, click Window and select Preferences.
2. In the Preferences dialog, select Android and Build.

3. Clear the Custom debug keystore

4. Click OK.

Handle Configuration Changes for Your Activity

If a user changes the screen orientation or changes the keyboard state of the device while they are logging in, it
will prompt a restart of the current activity. This restart will dismiss the login screen unexpectedly. To prevent this,
you should set the activity that uses the authorize method to handle those configuration changes manually. This
will prevent a restart of the activity.

1. In Package Explorer, double-click xml.
2. In the Application section, locate the activity that will handle Login with Amazon (for example, MainActivity).

3. Add the following attribute to the activity you located in Step 2:

android:configChanges="keyboard|keyboardHidden|orientation”

Or for API 13 or greater:

android:configChanges="keyboard|keyboardHidden|orientation|screenSize”

4. From the File menu, click Save
Now, when a keyboard or device orientation change happens, Android will call the onConfigurationChanged
method for your activity. You do not need to implement this function unless there is an aspect of these

configuration changes that you want to handle for your app

Add an Authorization Activity to Your Project

When the user clicks the Login with Amazon button, the API will launch a web browser to present a login and
consent page to the user. In order for this browser activity to work, you must add the AuthorizationActivity to your
manifest.

1. In Package Explorer, double-click xml.
2. In the Application section, add the following code, replacing “com.example.app” with your package name for

this app:

<activity android:name=
“com.amazon.identity.auth.device.authorization.AuthorizationActivity”
android:theme="@android:style/Theme.NoDisplay” android:allowTaskReparenting="true”
android:launchMode="single Task”><intent-filter>

<action android:name="android.intent.action.VIEW” />

<category android:name="android.intent.category. DEFAULT” /><category android:name="android.intent.cate
gory.BROWSABLE” />

<!- android:host must use the full package name found in Manifest General Attributes —
<data

android:host="com.example.app” android:scheme="amzn” />

</intent-filter>

</activity>

Add a Login with Amazon Button to Your App

your app. This section gives steps for downloading an official Login with Amazon image and pairing it with an
Android ImageButton.

1. Add a standard ImageButton to your app.
For more information on Android buttons and the ImageButton class, see Buttons on developer.android.com.
2. Give your button an id.

In the button XML declaration, set the android:id attribute to @+id/login_with_amazon. For example:

android:id="@+id/login_with_amazon”

3. Choose a button image.
Consult our Login with Amazon Style Guidelines for a list of buttons that you can use in your app. Download a
copy of the LWA_Android.zip file. Extract a copy of your preferred button for each screen density your app
supports (xxhdpi, xhdpi, hdpi, mdpi, or tvdpi). For more information on supporting multiple screen densities in
Android, see Alternative Layouts in the “Supporting Multiple Screens” topic ondeveloper.android.com.

4. Copy the appropriate button image files to your project.
For each screen density that you support (xhdpi, hdpi, mdpi, or Idpi), copy the downloaded button to the
res/drawable directory for that screen density.

5. Declare the button image.
In the button XML declaration, set the android:src attribute to the name of the button you have chosen. For

example:

https://developer.android.com/oauth2authorize?return_url=https%253A%252F%252Fdeveloper.android.com%252Fguide%252Ftopics%252Fui%252Fcontrols%252Fbutton&prompt=none&auto_signin=True&scopes=https%253A%252F%252Fwww.googleapis.com%252Fauth%252Fdeveloperprofiles+https%253A%252F%252Fwww.googleapis.com%252Fauth%252Fdeveloperprofiles.award

android:src="@drawable/btnlwa_gold_loginwithamazon.png”

6. Load your app, and verify that the button now has a Login with Amazon image. You should verify that the

button displays properly for each screen density you support.

Handle the Login Button and Get Profile Data

This section explains how to call the authorize and getProfile APIs to log in a user and retrieve their profile data.
This includes creating an onClick listener for your Login with Amazon button in the onCreate method of your app.

1. Add Login with Amazon to your Android project. See Install the Login with Amazon Library .
2. Import the Login with Amazon API to your source
To import the Login with Amazon API, add the following import statements to your source file:

import com.amazon.identity.auth.device.AuthError; import
com.amazon.identity.auth.device.authorization.api.

AmazonAuthorizationManager; import

com.amazon.identity.auth.device.authorization.api. AuthorizationListener; import com.amazon.identity.auth.d

evice.authorization.api.AuthzConstants;

3. Initialize AmazonAuthorizationManager.
You will need to declare an AmazonAuthorizationManager variable and create a new instance of the class.
Creating a new instance only requires your current application context and an empty bundle. The best place to
initialize AmazonAuthorizationManager is in the onCreate method of your Activity. For example:

4. Create an AuthorizelLiistener.
AuthorizeListenerimplements the AuthorizatioinListener interface, and will process the result of the
authorizecall. It contains three methods: oinSuccess, onError, and onCanceil. Each method receives either a

Bundle or an AuthError object.

private class AuthorizeListener implements AuthorizationListener{
/* Authorization was completed successfully. */

@0Override

public void onSuccess(Bundle response) {

}
/* There was an error during the attempt to authorize the application.
*/

@0Override

public void onError(AuthError ae) {

}
/* Authorization was cancelled before it could be completed. */
@Override

public void onCancel(Bundle cause) {

}
}

5. Call AmazonAuthorizationManager.authorize.
In the onClick handler for your Login with Amazon button, call authorize to prompt the user to log in and
authorize your application.
This method is responsible for authorizing the customer in one of the following ways:
1. Switches to the system browser and lets the customer sign in and consent to the requested

2. Switches to web view in a secure context, to let the customer sign in and consent to the requested

This secure context for #2 is currently made available as the Amazon Shopping app on Android devices.
Amazon-created devices running Fire OS (for example Kindle Fire, Fire Phone, and Fire TV) always use this
option even if there is no Amazon Shopping app on the device. Because of this, if the customer is already
signed in to the Amazon Shopping app, this API will skip the sign- in page, leading to a Single Sign On
experience for the customer.

When your application is authorized, it is authorized for one or more data sets known as scopes. The first
parameter is an array of scopes that encompass the user data that you are requesting from Login with
Amazon. The first time a user logs in to your app, they will be presented with a list of the data you are
requesting and asked for approval. Login with Amazon currently supports three scopes: profile, which contains
the user's name, email address, and Amazon account id; profile:user_id, which contains only the Amazon
account id; and postal_code, which contains the user’s zip/postal code.

The best way to call authorize is asynchronously, so you do not have to block the Ul thread or create a worker
thread of your own. To call authorizeasynchronously, pass an object that supports the

AuthorizationListenerinterface as the last parameter:

private AmazonAuthorizationManager mAuthManager;

@0Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);

mAuthManager = new AmazonAuthorizationManager(this, Bundle.EMPTY);

// Find the button with the login_with_amazon ID

// and set up a click handler

mLoginButton = (Button) findViewByld(R.id.login_with_amazon);
mLoginButton.setOnClickListener(new OnClickListener() {
@0Override

public void onClick(View v) {

mAuthManager.authorize(

new String [J{“profile”,"postal_code”},

Bundle.EMPTY, new AuthorizeListener());
}
D
}

6. Create a ProfileListener.
ProfileListeneris our name for a class that implements the APIListener interface, and will process the result of
the getProfile call. APIListener contains two methods: onSuccess and onError (it does not support onCancel
because there is no way to cancel a getProfile call). onSuccess receives a Bundle object with profile data,

while onEriror receives an AuthError object with information on the error.

private class ProfileListener implements APIListener{

/* getProfile completed successfully. */ @Override

public void onSuccess(Bundle response) {

}

/* There was an error during the attempt to get the profile. */ @Override

public void onError(AuthError ae) {

}
}

7. Implement onSuccess for your AuthorizeListener.
In onSuccess, call AmazonAuthorizationManager.getProfile to retrieve the customer profile. getProfile, like
authorize, uses an asynchronous listener interface. For getProfile, that interface is APIListener,

notAuthorizationListener.

/* Authorization was completed successfully. */ @Override
public void onSuccess(Bundle response) {

mAuthManager.getProfile(new ProfileListener());}

8. Implement onSuccessfor your ProfileListener.
onSuccesshas two main tasks: to retrieve the profile data from the response Bundle, and to pass the data to
the Ul. updateProfileDatais a hypothetical function your app could implement to display profile details.
setLoggedinState, another hypothetical function, would indicate that a user is logged in and give them a means
of loggingout.
To retrieve the profile data from the Bundle, we use names stored by the AuthzConstants class. The
onSuccess bundle contains the profile data in a BUNDLE_KEY.PROFILE bundle.
Within the profile bundle, the scope data is indexed under PROFILE_KEY.NAME, PROFILE _KEY.EMAIL,
PROFILE_KEY.USER_ID, and PROFILE_KEY.POSTAL_CODE. PROFILE_KEY.POSTAL_CODE is only

included if you request the postal_code scope.

@Override

public void onSuccess(Bundle response) {

// Retrieve the data we need from the Bundle Bundle profileBundle = response.getBundle(
AuthzConstants.BUNDLE_KEY.PROFILE.val);

String name = profileBundle.getString(

AuthzConstants.PROFILE_KEY.NAME.val);

String email = profileBundle.getString(

AuthzConstants.PROFILE_KEY.EMAIL.val);

String account = profileBundle.getString(

AuthzConstants.PROFILE_KEY.USER_ID.val);

String zipcode = profileBundle.getString(
AuthzConstants.PROFILE_KEY.POSTAL_CODE.val);

runOnUiThread(new Runnable() { @Override

public void run() {

updateProfileData(name, email, account, zipcode);

}
s
}

9. Implement onError for your ProfileListener.

onErrorincludes an AuthError object containing details about the error.

/* There was an error during the attempt to get the profile. */ @Override
public void onError(AuthError ae) {

/* Retry or inform the user of the error */

}

10. Implement onErrorforyour AuthorizeListener.

/* There was an error during the attempt to authorize the application.
*/

@0Override

public void onError(AuthError ae) {

/* Inform the user of the error */

}

11. Implement onCancelfor your AuthorizeListener.
Because the authorization process presents a login screen (and possibly a consent screen) to the user in a
web browser (or a webview), the user will have an opportunity to cancel the login or navigate away from the
web page. If they explicitly cancel the login process, onCancel is called. If onCancelis called, you will want to

reset your UL.

/* Authorization was cancelled before it could be completed. */
@0Override
public void onCancel(Bundle cause) {

/* reset the Ul to a ready-to-login state */

}

Note: If the user navigates away from the login screen in the browser or web view and switches back to your
app, the SDK will not detect that the login was not completed. If you detect user activity in your app before login

is completed, you can assume they have navigated away from the browser and react accordingly.

Check for User Login at Startup

If a user logs into your app, closes the app, and restarts the app later, the app is still authorized to retrieve data.
The user is not logged out automatically. At startup, you can show the user as logged in if your app is still
authorized. This section explains how to use getToken to see if the app is still authorized.

1. Create a TokenListener.
TokenListener implements the APIListener interface, and will process the result of the getToken call.
APIListener contains two methods: onSuccess and onError (it does not support onCancel because there is no
way to cancel a getToken call). onSuccess receives a Bundle object with token data, while onError receives an

AuthError object with information on the error.

private class TokenListener implements APIListener{

/* getToken completed successfully. */ @Override
public void onSuccess(Bundle response) {

}
/* There was an error during the attempt to get the token. */ @Override

public void onError(AuthError ae) {

}
}

2. In the onStart method of your Activity, call getToken to see if the application is still authorized.
getToken retrieves the raw access token that the AmazonAuthorizationManager uses to access a customer
profile. If the token value is not null, then the app is still authorized and a call to getProfile should succeed.
getTokenrequires the same scopes you requested in your call to authorize.
getTokensupports asynchronous calls in the same manner as getProfile, so you do not have to block the Ul
thread or create a worker thread of your own. To call getToken asynchronously, pass an object that supports

the APIListener interface as the final parameter.

@0Override

protected void onStart(){

super.onStart

();mAuthManager.getToken(new String [){“profile”,"postal_code”},
new

TokenListener());

}

3. Implement onSuccess for your TokenListener.
onSuccesshas two tasks: to retrieve the token from the Bundle, and if the token is valid, to call getProfile.
To retrieve the token data from the Bundle, we use names stored by the AuthzConstants class. The onSuccess
bundle contains the token data in a BUNDLE_KEY.TOKEN value. If that value is not null, this example calls

getProfile using the same listener you declared in the previous section (see steps 7 and 8).

/* getToken completed successfully. */

@Override

public void onSuccess(Bundle response) {

final String authzToken =

response.getString(AuthzConstants. BUNDLE_KEY.TOKEN.val);
if (ITextUtils.isEmpty(authzToken))

{
/I Retrieve the profile data
mAuthManager.getProfile(new ProfileListener());

}
}

Clear Authorization State and Log Out a User

The clearAuthorizationState method will clear the user’s authorization data from the
AmazonAuthorizationManager local data store. A user will have to log in again in order for the app to retrieve
profile data. Use this method to log out a user, or to troubleshoot login problems in the app.

1. Implement a logout
When a user has successfully logged in, you should provide a logout mechanism so they can clear their profile
data and previously authorized scopes. Your mechanism might be a hyperlink, or a menu item. For this
example we will create an onClick method for a button.

2. In your logout handler, call clearAuthorizationState. clearAuthorizationState will remove a user’s authorization

data (access tokens, profile) from the local store. clearAuthorizationStatetakes no parameters except for an

APIListener to return success or
3. Declare an anonymous APIListener.
Anonymous classes are a useful alternative to declaring a new class to implement APIListener. See Handle the

Login Button and Get Profile Data (p. 17) for an examplethat declares listener classes.

4. Implement onSuccess inside the APIListener
When clearAuthorizationState succeeds you should update your Ul to remove references to the user, and
provide a login mechanism users can use to log in again.

5. Implement onError inside the APIListener.

If clearAuthorizationStatereturns an error, you can let the user try to log out again.

@0Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);

/* Previous onCreate declarations omitted */

// Find the button with the logout ID and set up a click handler
mLogoutButton = (Button) findViewByld(R.id.logout);
mLogoutButton.setOnClickListener(new OnClickListener() {
@Override

public void onClick(View v) {
mAuthManager.clearAuthorizationState(new

APIListener() {

@Override

public void onSuccess(Bundle results) {

// Set logged out state in Ul

}
@Override

public void onError(AuthError authError) {

// Log the error

Call AmazonAuthorizationManager Methods Synchronously

Some AmazonAuthorizationManager methods return a Future object. This allows you to call the method
synchronously instead of passing a listener as a parameter. If you do use a Future object, you should not use it on
a Ul thread. If you block a Ul thread for more than five seconds you will get an ANR (Application Not Responding)
prompt. In the Handle the Login Button and Get Profile Data example , the onSuccess method for
AuthorizeListener is called with a worker thread created by AmazonAuthorizationManager. This means it is safe to
use that thread to call getPirofile synchronously. To make a synchronous call, assign the return value from
getPirofile to a Future object, and call the gietmethod on that object to wait until the method completes.

Fuiture.get returns a Bundle object that contains a FUTURE_TYPE value of SUCCESS, ERROR, or CANCEL. If
the method was a success, the same bundle will contain PROFILE_KEY values for the profile data. For example:

/* Authorization was completed successfully. */

@0Override

public void onSuccess(Bundle response) {

Future<Bundle> future = mAuthManager.getProfile(null); Bundle result = future.get();// Find out if the call su
cceeded, and retrieve the profile Object future_type =

result.get(AuthzConstants.BUNDLE_KEY.FUTURE.val);

if (future_type == AuthzConstants.FUTURE_TYPE.SUCCESS)

{
String name = result.getString(AuthzConstants.PROFILE_KEY.NAME.val);

String email = result.getString(AuthzConstants.PROFILE_KEY.EMAIL.val);

String account = result.getString(AuthzConstants.PROFILE_KEY.USER_ID.val);

String zipcode = result.getString(AuthzConstants.PROFILE_KEY.POSTAL_CODE.val);
runOnUiThread(new Runnable() { @Override

public void run() { updateProfileData(name, email, account,

zipcode);

}
D;
}
else if (future_type == AuthzConstants.FUTURE_TYPE.ERROR)
{
/I Get error object

AuthError authError = AuthError.extractError(result);
/* Use authError to diagnose error */

}
else if (future_type == AuthzConstants.FUTURE_TYPE.CANCEL)

{

/* User cancelled during authorization */

}
}

Login with Amazon Getting Started Guide for Android — Download [optimized]

https://manuals.plus/wp-content/sideloads/amazon-login-with--getting-started-guide-for-android-optimized.pdf

Login with Amazon Getting Started Guide for Android — Download

Manuals+,

https://manuals.plus/wp-content/sideloads/amazon-login-with--getting-started-guide-for-android-original.pdf
https://manuals.plus/

	Login with Amazon Getting Started Guide for Android
	Getting Started for Android
	Installing the Android Developer Tools
	Install the Login with Amazon SDK for Android
	Run the Sample App

	Registering with Login with Amazon
	Register Your Login with Amazon Application
	Register Your Android App

	Add an Android App for Amazon Appstore
	Android App Signatures and API Keys
	Determine the Android App Signature
	Retrieve the Android API Key

	Creating a Login with Amazon Project
	Create a New Login with Amazon Project
	Install the Login with Amazon Library
	Set Network Permissions for Your App
	Add Your API Key to Your Project
	Handle Configuration Changes for Your Activity
	Add an Authorization Activity to Your Project
	Add a Login with Amazon Button to Your App
	Handle the Login Button and Get Profile Data
	Check for User Login at Startup
	Clear Authorization State and Log Out a User
	Call AmazonAuthorizationManager Methods Synchronously

