Manuals+ — User Manuals Simplified.

Actel SmartDesign MSS ACE Simulation User Guide

Home » Actel » Actel SmartDesigh MSS ACE Simulation User Guide

Contents

1 Actel SmartDesign MSS ACE Simulation
2 Product Information: SmartDesignh MSS ACE
Simulation
3 Creating the Design
4 Configuring MSS
5 Preparing the Testbench
6 Introduction
7 Preparing the Testbench
8 Creating a Custom Testbench
9 CAE Analog Drivers
10 Connecting Analog Ports with Verilog
11 Documents / Resources
11.1 References
12 Related Posts

JActel

Actel SmartDesign MSS ACE Simulation

=
A

i

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/actel
https://manuals.plus/actel/smartdesign-mss-ace-simulation-manual.pdf

Product Information: SmartDesign MSS ACE Simulation

The SmartDesign MSS ACE Simulation is a feature that allows simulation of the ACE functionality in
ModelSimTM. It provides users with a way to verify that their configuration works based on their system input.
This tool is a part of the SmartFusion MSS, and it includes a library of analog drivers functions. The tool provides
a simple example of simulating ACE, and the user manual provides detailed instructions for users to get started.

Creating the Design

To create a design using the SmartDesign MSS ACE Simulation tool, users will need to follow these steps:

1. Configure MSS: Disable peripherals that are not needed and create a simple ACE configuration.
2. Create a top-level SmartDesign wrapper and instantiate the configured MSS component.

3. Prepare the testbench: Customize the basic testbench to include ACE simulations.

Configuring MSS

In this step, users will need to disable the peripherals that are not needed for their specific configuration. The
following peripherals can be disabled:

« UARTs
o SPIs
e 12Cs
« MAC

Fabric Interface

« External Memory Controller

After disabling unnecessary peripherals, users can create a simple ACE configuration consisting of a single ADC
Direct Input service with a few flags and a sampling sequence loop. The Flag mapping feature can be used to
determine which Flag register and bits flags were mapped to. Once the configuration is complete, the MSS design
can be generated.

Preparing the Testbench

The final step is to prepare the testbench. SmartDesign automatically generates a testbench.v file that is useful
for basic simulations. However, users will need to customize this file to include ACE simulations. Users can create
a custom testbench by following these steps:

1. Open the Files tab in the Project Manager to view the file hierarchy.

2. Locate the testbench.v file and customize it to include ACE simulations.

Once the testbench is customized, users can simulate the ACE functionality in ModelSimTM.

SmartDesign MSS
ACE Simulation

Introduction

The ACE functionality can be simulated in ModelSim™ to verify that your configuration works based on your
system input. This document walks through a simple example of simulating the ACE. Please refer to Simulating
the Microcontroller Subsystem for a more general overview of the simulation strategy for SmartFusion MSS.
Details about the analog driver functions that are available in the SmartFusion library are at the end of this
document in the Analog Drivers section.

Creating the Design

We will create a simple SmartFusion MSS and ACE configuration to demonstrate how you can simulate the ACE.

Configuring MSS

We’'ll disable the following peripherals since we will not be using them in this example:

Fabric Interface

External Memory Controller

We’ll create a simple ACE configuration consisting of a single “ADC Direct Input” service with a few flags, and a
simple sampling sequence loop. The configuration is shown below.

Configure ADC Direct Input

ADC Sugrial niarres:

-
-

ADCDirectinput_0 [~ Sand raw ADC result ko DMA

Acquiskion time: | 10,000 u
Digtal fitering [Unear transtormation
Fikering Factor: hione - Scale Factor:
Offset:
r —
Threshold Detection ﬂ J
Threzhold | Hystereziz | Azeert De-aszert | &
| e | Flag Type | [¥] [mV] Samples I Eﬂllﬂhil
OvERTY OvER 1 100
OVER2Y OvER 2 1} 0 1}
UMDERTY UMDER 1 i} g 3
o

oK | Canicel

(X

Figure 1: ADC Direct Input and Threshold Configuration

Conflgure ACE Controller | Flags |

-1/]

[aDCElocko
ADCI_MAIN] ADCBlock 1

Details of procedure: ADCO_MAIN

Operating sequence ﬁ J _I

Instruction

Sample ADCDiectnput_0
Restaits the execution sequence for this timeslot

Figure 2: Sampling Sequence Configuration

We use the Flags tab to determine which Flag register and bits our flags were mapped to. This is useful when we
write our BFM script later (as shown in the figure below).

Configure ACE | Controller Flags]
Select a register bo view ACE Flag mapping: Available bits of PPE_FLAGSO register:
Fabric Bit Source | Interrupt | ~
= Flag Registers 0] ADCDirectnput_0:0VERTY 54
PPE_FLAGSO { 0x40021450) 1| ADCDirectinput_ 0:0VER2Y 55
PPE_FLAGS] ({ 0x40021454) 2| <none 56
PPE_FLAGSZ { 0240021455) 3| <nonex a7
PPE_FLAGS3 { 0x4002145¢) 4| £nones 58
PPE_SFFLAGS { 0x40021460) 5| <nones 59
(=g QP en
Configure ACE | Contraller Flags
Select & register to view ACE flag mapping: Available bits of PPE_SFFLAGS register:
#-Fabric Bit Source | Interrupt | A
=-Flag Registers 0| ADCDwectinput_0:UNDER1Y 54
PPE_FLAGSO { 0x40021450) 1] ¢nones 55
PPE_FLAGS1 (Ox40021454) 2| ¢none> 56
PPE_FLAGSZ (Dx40021455) 3| <nones 57
PPE_FLAGS3 { 0x4002145¢c) 4] <nones 53
PPE_SFFLAGS { 0x40021460) 5 <none> 59
Bl rmmman En

Figure 3: Flag Mapping

The Flag mapping tells us that

« OVER1V was mapped to PPE_FLAGSO register, bit 0
« OVER2V was mapped to PPE_FLAGSO register, bit 1
« UNDER1V was mapped to PPE_SFFLAGSO register, bit 0

Our MSS design should look like this after configuration:

MACROCON TROLLER SUBSYSTEM |

Clpdk Managesnent: CputextD) . LA_Lal
LTT-1TT T3 ™ EMY™ Extermal Memory Contral ler
| T I |
&]
x
AHE Biss Malbroc I
| ;
= x =
APE_D APH_I
ALE LART 0 LT L
B = = =
. . v
Lo _oseLL
TIMER=Z =F
") SRR
— o
BT MG Lo tect

t [.
AT 2 e HAL GFID EFROM
o } ' |
13

Haedwars ol wiion
MSS 10 » Fabfic edace
P Cal byt
0 e Cardigamni
Er,

Figure 4: Sample MSS Design After Configuration

Generate the MSS
Creating Top Level SmartDesigh Wrapper

Create a top level SmartDesign component and instantiate our newly configured MSS component. Set the top
level SmartDesign as root, and generate the SmartDesign.

MSSTOP_O
=] o Q
MSS_RESET_N MSS_RESET M
ADCDirectinput_0 ADCDirectinput_0 a
VAREFD P VAREFD
P,
o =) a
MssTOP

Figure 5: Top-Level SmartDesign on the Canvas

Preparing the Testbench

Now that the design is generated, let’s open up two files that we’ll need for simulation purposes.

Go to the Libero® IDE Project Manager Files tab and open the testbench.v and user.bfm from your MSS
component (as shown in the figure below).

. Project Manager - E:\DEMOVACE_SIMUI

B project Fie Edt ¥iew Took ‘Window

R&@ DS @] o
Design Explorer
= Components
= Comman HOL Source Files
EL MiEE_COMDE. Y
-1 [soToP
+ - HOL Source Files
+ Shmuluz Fles
+ Constraint Files
- (] mssTOP
+ HDL Source Files
= Simulation Files
B testhim
l_,ﬂ user bfm
= Stimuluz Files
B testbenchw
= Constrairt Files
MSSTOP pde
Other Files
MSS_ENYM_0 efc

- Uszer Files
Block Svrnbol Files

b= | Higranchy Fﬂe: I

Figure 6: Files Tab (File Hierarchy) in Project Manager

Creating a Custom Testbench

The testbench.v file that is automatically generated by SmartDesign is useful for basic simulations, but for ACE
simulations we will need to customize this basic testbench.
To create a new testbench:

1. From the Libero IDE Project Manager choose File > New.
a. Select HDL Stimulus File
b. Name the file ace_testbench and click OK.

2. Copy and paste the contents of testbench.v to ace_testbench. We now have a testbench that we can
customize for ACE simulations.

3. Add a simple SmartFusion CAE library analog driver function to drive our analog input service ADCDirectInput.

The following code fragment should be added to your testbench. A voltage value is ramped up, then down.

initial
begin
repeat | } fiposedge SYISCLK)
/ increass the voltage
for(i=0; 1<70; imi+]l }
bagin
directinputl woltage = directinput(wvoltage + volt increment;
repeat |(} @ (posedge SYICLE) ;
end
/ decrease the voltage
for(i=20; i<0; i=i=1)
begin
directinputl voltage = directinput(voltage - volt increment;
repeat | } @ {posedge SYSCLE) ;
end
end
'/ analog driwver function
drive analog input u directinput(dew { Srealtobits{dicectinputl voltage), dicectinputl in)

Notice the drive_analog_input function that is used to convert the real value into a value that can be driven into
the analog port. Refer to the CAE Analog Drivers section for more details.

Modifying our BFM Script
We will create a simple BFM script that just loops and reads our PPE registers. This mimics a Cortex M3 polling
scheme. The addresses of the PPE_FLAGSn and PPE_SFFLAGS registers are available in the SmartFusion
Handbook. It is also shown in the Flags tab in the ACE configurator, in addition to the bit in which the flag is
assigned to in the register.

In the user.bfm script file, we will add these commands:

ACE register offsets

constant FPE FLAGS0 0x1450;

constant PPE SFFLAGS 0x1460;

procedure user main;

uncomment the following include if you have soft peripherals in the fabric
that you want to simulate. The subsystem.bfm file contains the memory map
of the soft peripherals.
include "subsystem.bfm"

add your BFM commands below:

int flags0 wvalue;

int sflag value;

int loop;

set loop 1;

while loop ==
readstore w ACE PPE FLAGSQ flags0_wvalue;
readstore w ACE PPE SFFLAGS sflag walue;

endwhile

recurn

In this script, we continually read the PPE_FLAGSO0 and PPE_SFFLAGS register addresses into 2 data variables.
If we wanted to create a more complex scenario, we could take those values and write them to GPIOs or perform
other actions in our BFM commands based upon their value.

Associating our Custom Testbench with our Design
We need to tell the Libero IDE to use our custom testbench for simulation instead of the system generated one.

1. Right-click the SDTOP component in the Project Manager Design Hierarchy and choose Organize Stimulus

2. We want to use ace_testbench instead of testbench.v. So select testbench.v from the right panel and click
Remove. Then select ace_testbench.v from the left panel and click Add.

3. Click OK

Simulate
Now we’re ready to simulate.

« In the Project Manager Project Flow window click the ModelSim button.
« In ModelSim’s command window type run 3ms. In our example, we are running for 3ms because we have a
long hardcoded delay in our testbench, because we want to ensure that the ADC calibration is completed

before we begin processing.

Organize Stimulus E]

Click to select a stimulus file in the project, and use the Add button to associate the file,
Use the Remove button to remove associated files.

Use the Up/Down amow buttons to specify the compilation order for the simulator.

The top level module should appear last in the list box.

2] 4]

Stimulus files in the project; [Origin | Azzociated files: | Origin |
testbench. v MS5S... testhench v SDTOP
ace_testbench.v User

Add =

4+ Remove |

Help | 0K I Cancel

CAE Analog Drivers

« Analog ports are represented by a 1-bit wide port in both the Verilog and VHDL simulation models. Driver
modules are developed to drive a real value through a 1-bit port and to read an analog value from a 1-bit port.

« The drive module/function serializes and streams the real value represented in floating point representation
(64-bit value) in zero simulation time, using delta delays. The read module deserializes a stream into a 64-bit

value.

Interfaces of all the drivers are given later in respective testbenches

« drive_analog_io and drive_analog_input can drive an analog input. Input is provided to this module as 64 bit
value.

« read_analog_io can read any analog signal coming from the Analog Block. Output is provided as a 64 bit value.

« drive_temperature_monitor is used to drive the temperature pad. This module takes temperature in Celsius
and converts it into a voltage and drives it over the digital input.

« drive_current_monitor or drive_current_inputs can be used to drive the current pad that will be used for Current
Monitoring. As an input it takes the voltage at AT pad, the resistor and current values, to calculate the voltage
on the AC quad.

o Equation is AC(V) = AT(V) + Resistor * current

o Interface information of both the drivers is given below

Connecting Analog Ports with Verilog

Use $realtobits function to convert the real value to 64 bit value or $bitstoreal function can be used to convert the
data from 64 bit to real value.
The following shows the analog drivers that are available in Verilog:

module drive analog io (parallel in, serial out);
input [63:0] parallel in;
output serial out;

endmodule N

module drive analog input (parallel in, serial out);
input [63:0] parallel in;
output serial out;

endmodule

module drive current monitor (temp wvect, resistor vect, current wvect,
serial out) ; - - - -
input [1 0] temp wvect;
input [c-:0] resistor_vect;
input [0-:0] current wvect;
output serial out;
endmodule

module drive current inputs (current_vect, resistor_vect, temp_vect, ac, at);
input [c-:0] temp wvect;
input [0-:0] resistor_vect;
input [c-:0] current wvect;

output ac;
output at;
endmodule

module drive temperature quad (temp celsius, serial out);
input [o-:0] temp_celsius;
output serial out;

endmodule

module read analog io (serial in, read enb, parallel out);

input serial in;

input read_eﬁb;

output reg [c-:0] parallel out;
endmodule

The following testbench demonstrates the usage of all drivers.

module example tb ()

real varef real;
real av0 in
real at0 in

real acl in .0;
real resl in = 0.1;
real atl _in = H
real acZ in = 1.0;
real resZ in = [..;
real at2 in = 0. .°;

wire av0, at0, acl, atl, ac2, at2;

wire [f-:0] varef bits;
drive analeg_input inst0 ($realtcbits(av0_in), av0);

read analeg input instl(varefout, waref bits);
always @(varef bits)
varef real = 5bitstoreal (varef bits);

drive temperature quad inst2(Srealtobits(at0_in), at0);

drive current meonitor inst3 ($realtcobits(atl in), $realtcbits{resl in),
Srealtobits(acl in), acl);
drive analeg input inst0 ($realtcbits(atl in), atl);

drive current inputs instd (Srealtcbits({acZ in), Srealtcbits(res2 in),
Srealtobits(at2 in), ac2, at2);
endmodule

Connecting Analog Ports with VHDL

realtobits function (equivalent to $realtobits system task in verilog) and bitstoreal function (equivalent to
$bitstoreal in verilog) are available in float_pkg package present in smartfusion library. Notice that this package is
added to the testbench at the beginning. realtobits can be used to convert the real value to 64 bit floating point
representation. bitstoreal function is available in float_pkg package to convert this 64 bit value to a real value.
The following testbench demonstrates the usage of all drivers.

library smartfusion;
use smartfusion.float_pkg.all;

entity example th is

end example th;

architecture tbh arch of example th is
bagin - tb_arch

signal av)_in : real :m : — voltage value
signal varef real]

signal varef bits : std logic wector| downto)
signal at0_in real im : - temparature in celgiug
signal acl in = : — current value

signal resl in i H -- Fesigter vl
signal E'_J.__'i.‘:'l L : - woltoge ot temparature pod
signal acl in i : — current value

aignal resZ in : i H -- Fesigter vl
signal atZ in L : - waltoge ot temparature pod
signal awvl t :

signal =t0 :

signal acl H

signal ztl =¥

signal ac2 :

signal =t2 logic;

component drive analeg_input

port(
- Inputs
parallel in : im std logic wvector| downts) ;
— Outputs
serial out : eut std_logic
Vi

end component ;

component read anzlog io
port({serial in : in std leogic;
Parallel out : out std logic wvector(downte ()} ;
end component ;

component drive temparature guad
port |
temp celsius : in =td logic wvector(downte)

serial out : out std logich;
and component;

componant drive current monitor

port |
temp wvect + im s5td logic wector{ dowmto ()
resistor wect roaim =td logi k! tor | doswnto e
current wect 1 im std logic wector(dowmnto ()
5c:iaL_c:: + oot std logic):

and componant |

componant drive current inputs

poxrt |
current wect 1 im std logic wector(dowmnto ()
resistor wect t im =std logic v tor i downto U
temp wect 1 Am stad logi 1 tori downto)
ac ¢ out std logic)
at ¢ out std logic);

and componant]
bagin

u_dev_awld
port map (parallel in =» realtobics{awd in},
nrr:i.a'__:ur. =2 avwl}j;

u read varef @ read analog ip
port map |
serial in =3 yarefout,

parallel oot =» varef bits];
varef real <= bitstoreal (varef bits);

u dev atl ¢ drive temparature guad
port map [
temp celsins =» realtobits{atD in},
serial out =% at0);
--Drive current monitor. acl in is current in A. resl in is resistance wvalue,
-—in ohms and atl in is woltage at atl pad.
u drv acl @ drive current monitor
port map |

temp wvect =» realtobits{atl in},
regs wvect =» realtchics{resl ind,
current wvect =3 :naL:cbi:nilﬂl_in}.
serial out =3 acl);
u dew atl ¢ drive analog input
port map (parallel in =» :naLLJti:Fta:l_;:],
nrr:i.a'__:ur. =2 atl);

u drv ac2 : drive current_ inputs
port map |
temp vect = realtobits{at2 in},
reg vect =» regaltobita(res2 in),
current vect => realtchits({ae2 in},
ac = a2,
at => 3T}

end th arch;

Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of system
and power management solutions. Power Matters. Learn more at 14H http://www.actel.com

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United
Kingdom

Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540

http://www.actel.com

Actel Japan

EXOS Ebisu Building 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150, Japan Phone +81.03.3445.7671 Fax
+81.03.3445.7668 15H http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building 26 Harbour Road

Wanchai, Hong Kong

Phone +852 2185 6460

Fax +852 2185 6488

www.actel.com.ch

© 2009 Actel Corporation. All rights reserved. Actel and the Actel logo are trademarks of Actel Corporation. All
other brand or product names are the property of their respective owners.

Documents / Resources

PActel
SmartDesign MSS

ACE Simulation

Actel SmartDesign MSS ACE Simulation [pdf] User Guide
SmartDesign MSS ACE Simulation, SmartDesign, MSS ACE Simulation

References

« 8 FPGAs and PLDs | Microchip Technology

o @ actel.com.cn

Manuals+,

http://jp.actel.com
http://www.actel.com.cn
https://manuals.plus/m/13e1f7a75ea2da00f659c423a1a7ac6fb9df298ab9478bac8a7e012091634213
https://manuals.plus/m/13e1f7a75ea2da00f659c423a1a7ac6fb9df298ab9478bac8a7e012091634213_optim.pdf
http://www.actel.com
http://www.actel.com.cn
https://manuals.plus/

	Actel SmartDesign MSS ACE Simulation User Guide
	Actel SmartDesign MSS ACE Simulation
	Product Information: SmartDesign MSS ACE Simulation
	Creating the Design
	Configuring MSS
	Preparing the Testbench
	Introduction
	Preparing the Testbench
	Creating a Custom Testbench
	CAE Analog Drivers
	Connecting Analog Ports with Verilog
	Documents / Resources
	References

