
Home » ST » UM3078 ST25DVXXKC Linux User Space Driver User Manual

Contents
1 UM3078 ST25DVXXKC Linux User Space
Driver
2 Introduction
3 Purpose
4 Software structure
5 How to configure a board
6 Hardware setup
7 Compiling and running the sample projects
8 IMPORTANT NOTICE – READ CAREFULLY
9 Documents / Resources

9.1 References
10 Related Posts

UM3078 ST25DVXXKC Linux User Space Driver

Introduction

UM3078 ST25DVXXKC Linux User Space Driver User Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/_st
https://manuals.plus/_st/um3078-st25dvxxkc-linux-user-space-driver-manual.pdf

This document shows how to use the STSW-ST25DV009 software package to control a ST25DVXXKC dynamic
NFC tag from a Linux® platform. The STSW-ST25DV009 software package provides Linux® user space driver
and some examples that can be configured to run on any Linux® platform. The ST25DVXXKC is an NFC dynamic
tag, which can be managed by an RFID reader or by an NFC phone, it also has an I2C interface to communicate
with an MCU or MPU. The ST25DVXXKC is available, for example, on the X-NUCLEO-NFC07A1 expansion
board. Information and documentation related to the NFC components, the X-NUCLEO‑NFC07A1 expansion
board and the STSWST25DV009 software are available on www.st.com.

Purpose

ST25DVXXKC dynamic NFC/RFID tags are integrated circuits that can communicate with both:

RFID readers and NFC phones, based on the ISO/IEC 15693 and NFC Forum Type 5 tag specifications.

An MCU or MPU using an I2C interface.

These devices can be used on a Linux platform to enable a wireless communication, to easily transfer data from a
Linux platform to a smartphone (for instance: URL, GPS coordinates, Out-Of-Band pairing data, and so on). The
STSW‑ST25DV009 software package provides the required code to control a ST25DVXXKC device from the user
space of a Linux platform having an I2C controller.

Software structure

The STSW-ST25DV009 software is divided in several layers:

ST25DVXXKC component driver

Board support package

NDEF library middleware

Sample project codes

ST25DVXXKC component driver
The ST25DVXXKC component driver provides the methods to configure and control a ST25DVXXKC device. This
part of the code is independent from the hardware, and it requires some basic IO functions to be implemented
(see Section 2.2 Board support package) such as I2C read/write, gpio control. The ST25DVXXKC component
driver files are in the Drivers/BSP/Components/ST25DVxxKC directory.

Board support package
The board support package implements two different aspects:

The low-level IO functions called by the ST25DVXXKC component driver

An API to the ST25DVXXKC component driver methods

The board support package files are in the Drivers/BSP/Linux directory.

Low-level IO functions
The low-level IO layer implements all the low-level functions required by the ST25DVXXKC driver. This layer is
implemented in the Drivers/BSP/Linux directory with the files described in Table 1.

http://www.st.com

Files Description

 These files implement the functions to:

st25dv-i2c_linu
x.c • Configure, read and write the I2C interface

st25dv-i2c_linu
x.h • Get a millisecond tick

 This code relies on the /dev/i2c-X file to take control of the I2C peripheral.

st25dv-i2c-
gpo.c st25dv-i2
c-gpo.h

These files implement the functions to configure and receive interruptions from the GPO pin of
the ST25DVXXKC.

This code uses the /dev/gpiochipX file and a dedicated thread to poll for an event on the GPIO
.

st25dv-i2c-lpd.
c st25dv-i2c-lp
d.h

These files implement the functions to configure and control the low power down pin of the ST
25DVXXKC. This code uses the following files to control the GPIO:

•/sys/class/gpio/export

•/sys/class/gpio/gpioXX/direction

• /sys/class/gpio/gpioXX/value.

These functions are specific to the board used and must be adapted to the platform on which they are used (see
Section 3 How to configure a board).

API to the ST25DVXXKC driver methods
This API is only a wrapper around the ST25DVXXKC component driver. It is implemented in
Drivers/BSP/Linux/bsp_nfctag.c and Drivers/BSP/Linux/bsp_nfctag.h files.

NDEF library middleware
The NFC Forum defines a standard format to use when reading/writing an NFC device. This format is known as
NDEF messages. The NDEF library implements high level methods to easily format data into a NDEF compliant
manner. This STMicroelectronics library is delivered as a middleware, fully independent from the hardware and
coming with an interface file to be implemented for the targeted platform.
In the STSW-ST25DV009 software package these interface files are implemented in:

Projects\NDEF_URI\Src\lib_NDEF_config.c

Projects\NDEF_BLUETOOTH\Src\lib_NDEF_config.c

The NDEF library middleware files are in the Middlewares/ST/lib_nfc directory

Sample projects
In this section, a short overview of the sample projects included in the STSW-ST25DV009 pack is provided. The
sample projects:

must be adapted to the targeted Linux platform (as explained in Section 3 How to configure a board)

show to the user how to use the APIs to correctly initialize and use the dynamic NFC/RFID tag IC

(ST25DVxxKC device)

The sample projects are in the ./Projects directory.

NDEF_URI

This application shows how to write a simple URI NDEF message to the ST25DVXXKC EEPROM using the

NDEF lib middleware. A message is displayed when the message has been successfully written. A smartphone

or a NFC reader can be used to read the NDEF_URI message.

NDEF_BLUETOOTH

This application shows how to write a Bluetooth® OOB NDEF message to the ST25DVXXKC EEPROM using

the NDEF lib middleware. A message is displayed when the message has been successfully written. A

smartphone or a NFC reader can be used to read the NDEF_BLUETOOTH message.

GPO (general purpose output)

This example shows how to enable and use the GPO. After initialization, an interrupt is programmed to detect

field changes in proximity of the ST25DVXXKC. A message is displayed when the field is detected and when

the field disappears.

I2CPROTECTION

This example shows how to create areas in the ST25DVXXKC and how to protect them. Text is displayed on

the console.

LPD (low power down)

This example shows how to activate low power down (LPD) pin. By entering “1” or “0”, the LPD pin is activated

or deactivated. When the LPD pin is activated, the ST25DVXXKC VCC is cut off, the power consumption is

minimum and communication via I2C is not available.

Note: This test cannot be run with the X-NUCLEO‑NFC07A1 expansion board as the board does not connect

such pin.

Mailbox

This example shows how to write a message into the mailbox and how to read mailbox status register of

ST25DVXXKC device. The text is displayed.

I2CChannel

This example shows how to change I2C slave address and shows that writing a message into the mailbox and

reading mailbox status register of the ST25DVXXKC device both work with new slave address. The text is

displayed and I2C slave address is reverted to default value.

Note: If user stops the application before its end, appropriate I2C slave address has to be used for subsequent

communications with ST25DVXXKC.

I2CMode

This example shows how to change I2C slave mode (Normal/RF Off) and that with I2C slave mode set to

‘RFOFF’ no more NFC communication is handled whereas with I2C slave mode set to ‘Normal’ the NFC

communication is processed.

How to configure a board

The board support package layer must be slightly adapted to the targeted Linux platform, in order to select the I2C
peripheral to be communicate with ST25DVXXKC and the GPIOs is connected to the ST25DVXXKC GPO and
LPD pins. All the required definitions are listed in the following file: Drivers/BSP/Linux/hwconfig.h.

Table 2. Hardware configuration definition:

Featu
re Define Description

 I2C ST25DV_I2C_NR

It defines the I2C peripheral number used to communicate with the ST25DV
XXKC.

The value is used to complete the path to the /dev/i2c-X file.

 GPO

 ST25DV_GPO_GPIOC
HIP

It defines the GPIOCHIP number connected to the ST25DVXXKC GPO pin.

The value is used to complete the path to the /dev/gpiochipX file.

ST25DV_GPO_PIN It defines the GPIO pin number of the GPIOCHIP connected to the ST25DV
XXKC GPO pin.

 LPD

 ST25DV_LPD_PIN It defines the global GPIO pin number connected to the ST25DVXXKC LPD
pin. It is used to export this GPIO.

 ST25DV_LPD_DIRECT
ION

It defines the path to the Linux file defining the GPIO direction connected to t
he ST25DVXXKC LPD pin such as:

/sys/class/gpio/gpioXX/direction

 ST25DV_LPD_VALUE

It defines the path to the Linux file defining the GPIO value connected to the
ST25DVXXKC LPD pin such as:

/sys/class/gpio/gpioXX/value

Hardware setup

Hardware requirements:

Ubuntu-based PC/Virtual-machine version 16.04 or higher

STM32MP157F-DK2 board (discovery kit)

X-NUCLEO-NFC07A1

8 GB micro SD card to boot the STM32MP157F-DK2

SD card reader / LAN connectivity

USB Type-A to Type-micro B USB cable (optional)

USB Type A to Type-C USB cable

USB PD-compliant 5V 3A power supply

The PC/Virtual-machine forms the cross-development platform to build the sample projects application code. The
hardware is connected as follows:

1. Depending on STM32MP157F-DK2 discovery board I2C configuration mode (normal, fast, fast+), the X-

NUCLEO-NFC07A1 expansion board I2C pullup resistors (R5 and R6) may be increased up to 10 kΩ.

2. Plug the X-NUCLEO-NFC07A1 expansion board onto the Arduino® connectors on the bottom side of the

STM32MP157F-DK2 discovery board.

3. If required, connect the ST-LINK programmer/debugger embedded on the discovery board to host PC via the

USB micro B type port (CN11).

4. Power the discovery board through the USB Type C port (CN6).

Compiling and running the sample projects

Each STSW-ST25DV009 sample project comes with a makefile and can be compiled using a C compiler like
GCC. The pthread Linux library is used to create a thread detecting an event on the GPO line, this library is
required for a correct linking at compilation time. Compilation and run procedures:

1. On PC host:

copy all ST25DVLinux tree files to PC/Virtual-machine: scp -r <user@linuxmachine>:.

2. On PC/Virtual machine:

cross-compile the application (this generates statically linked executable file): cd ~//Projects/ make

clean all

copy exe file to Linux target board (RPi, STM32MP157F-DK2, …): scp ~//Projects//st25dv-i2c_

root@:.

3. On STM32MP157F-DK2 board:

run the copied exe file: chmod +x st25dv-i2c_ ./st25dv-i2c_

Revision history

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant
information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of
sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection,
and use of ST products and ST assumes no liability for application assistance or the design of purchasers’
products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST
products with provisions different from the information set forth herein shall void any warranty granted by ST for
such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to
www.st.com/trademarks. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this
document.
© 2022 STMicroelectronics – All rights reserved

Documents / Resources

http://www.st.com/trademarks

ST UM3078 ST25DVXXKC Linux User Space Driver [pdf] User Manual
UM3078 ST25DVXXKC Linux User Space Driver, UM3078 ST25DVXXKC, UM3078, ST25DVX
XKC, Linux User Space Driver, UM3078 Linux User Space Driver, ST25DVXXKC Linux User Sp
ace Driver, Linux User Driver, User Space Driver, Space Driver, Linux Driver, Driver

References

 STMicroelectronics: Our technology starts with you

 STMicroelectronics Trademark List - STMicroelectronics

 STM32MP157x-DK2 - stm32mpu

Manuals+,

https://manuals.plus/m/03272520f44482871546616ffb789b87e71f09f078b31ab41ddd4edab92e9993
https://manuals.plus/m/03272520f44482871546616ffb789b87e71f09f078b31ab41ddd4edab92e9993_optim.pdf
http://www.st.com
http://www.st.com/trademarks
https://wiki.st.com/stm32mpu/wiki/Getting_started/STM32MP1_boards/STM32MP157x-DK2
https://manuals.plus/

	UM3078 ST25DVXXKC Linux User Space Driver User Manual
	UM3078 ST25DVXXKC Linux User Space Driver
	Introduction
	Purpose
	Software structure
	How to configure a board
	Hardware setup
	Compiling and running the sample projects
	IMPORTANT NOTICE – READ CAREFULLY
	Documents / Resources
	References

