
Home » ST » TN1348 SPC58x Configuring CAN and CAN-FD Filters

Contents
1 TN1348 SPC58x Configuring CAN and CAN-FD
Filters
2 Introduction
3 CAN overview
4 Filtering introduction
5 Message RAM initialization
6 Example of standard ID filters

6.1 Range filter for RX FIFO0
6.2 Double filter for RX FIFO1
6.3 Rx dedicated buffer filtering
6.4 Classic filter for RX FIFO0

7 Extended ID filters configuration
7.1 Range extended filter for RX FIFO0
7.2 Double ID filter for FIFO 1
7.3 Dedicated rx buffer
7.4 Classic filter for rx FIFO1

8 Appendix A Reference documents
9 Appendix B Acronyms and abbreviations

9.1 Document revision history
10 IMPORTANT NOTICE – PLEASE READ CAREFULLY
11 Documents / Resources

TN1348 SPC58x Configuring CAN and CAN-FD Filters

TN1348 SPC58x Configuring CAN and CAN-FD Filters

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/_st
https://manuals.plus/_st/tn1348-spc58x-configuring-can-and-can-fd-filters-manual.pdf

Introduction

This technical note describes how to configure acceptance filters for CAN controllers embedded in SPC58x
automotive microcontrollers. The document describes the register configurations and provides some example to
speed up the filter configuration. These configurations can be adopted for all microcontrollers in this family with
minor variances. The examples in this document are based on SPC584Cx/SPC58ECx 32-bit MCU.

CAN overview

SPC584Cx/SPC58ECx has eight CAN instances embedded in two different subsystems as documented in the
device reference manual Section Appendix A Reference documents.
All the CAN controllers in the same subsystem will share resources like RAM memory, clock, etc. Each CAN
subsystem is constituded by the following major blocks:

Modular CAN cores: the registers of the CAN module can be accessed using the Generic Slave Interface (GSI).

The peripheral GSI module acts as a request from each master.

CAN-RAM arbiter: it is an additional logic for arbitration among the requests for the RAM access by the various

CAN controllers.

SRAM: the CAN subsystem will interface with an external RAM using this interface, it is the SRAM.

ECC controller: it contains the logic to compute and validate the correction code on the SRAM memory.

For the SRAM interface and memory organization refer to the device reference manual Section Appendix A
Reference documents.

Filtering introduction

CAN filter logic allows you to configure the filters in various way. For example, the messages that pass the
acceptance filtering can be stored in Rx FIFO (0 or 1) or in dedicated rx buffers. Each filter can be configured as
an acceptance or rejection filter and can also be enabled or disabled. For acceptance filter, each filter list is
performed from item #0 to the first matching item in the filter list. Before using filters it is mandatory to configure
the starting address and the numbers of the filter to reserve part of message RAM. The figure below shows a view
of the shared memory map and the registers (hence the starting addresses for each section).

Figure 1. Message RAM configuration example

Message RAM initialization

Before using any filter, it is mandatory to configure the relevant RAM area of the messages in which they will be
stored. To do this, the software application must write the offset (in words) from the message RAM base address
of each filter area. The number of filters for each area must be configured, so that the controller can understand
where each related filter memory area ends In this document, as example four filters, will be configured for
standard identifiers (11 bits) and four filters for extended identifiers (29 bits), so, reserve a portion of message
RAM to store 11-bit filters and another for 29-bit filters. To configure the starting address of the standard id filter
area, the software must write the FLSSA field of the SIDFC register (Standard ID filter configuration register). For
extended ID filters it is necessary to write the FLESA field of the XIDFC register (Extended ID filter configuration
register). The FLSSA and FLESA fields should contain the memory offset “in words” from the RAM base address
of the message. This application configures four standard filters at offset zero and four extended filters

For standard filter configuration:

FLSSA = 0x0: the offset respect to message RAM base address is zero, so the area starts at the beginning of

the Message RAM.

LSS = 4: this is the number of filters to configure. Each filter is composed by `one` 32 bits word.

In this configuration a portion of memory starting from offset zero and having a size of four words.

Note: the CAN controller has no control mechanism for configuring the message RAM, this means that the
Developer must be careful not to overlap the configured RAM areas. The following figure shows how to configure
a portion of memory to store extended identification filters.

To configure the RAM area to store extended filters it is necessary to program the following values in the FLESA
and LSE fields.

FLESA = 0x04: the offset in words respect to message RAM base address. This because in previous

configured filters area it has been reserved 0x04 words for standard ID filters and then the minimum usable

offset is 0x04.

LSE = 4: this is the number of filters to configure. For extended ID a filter is composed by `two` 32 bits word.

In this configuration a portion of memory starting from offset 0x04 (words) having a size of eight words (four two-
word filters). Therefore, the minimum offset for the next configurable memory area is 0x0C words. All sections of
the message RAM must be configured considering the number and size of the elements that will be stored in the
section without overlapping any sections.
Note: to convert a word offset into a byte offset, it is needed to multiply the word value by four.

Example of standard ID filters

After configuring the message RAM, you can configure the device filters.
Each filter element can be configured as:

Range filter

Double ID filter

Classic filter

Filter for dedicated rx buffer (single ID filter)

The following figure shows how to configure four different types of filters for standard identifiers (11-bit identifiers).
Use the following filter element register for STANDARD ID.

Range filter for RX FIFO0

Below an example of filtering to store the messages with identifiers in the range [0x16 , 0xF6] into the Receive
FIFO 0.
Register value (HEX): 0x081600F6
Register value (BIN): 00 001 00000010110 (00000) 00011110110

Note: in all the examples provided in this document, the bracketed bits are kept at the default value. Fields
values:

SFT -> `00` -> Range filter from SFID1 to SFID2

SFEC -> `001` -> Store in Rx FIFO 0 if filter matches

SFID1 -> `00000010110` -> First ID of standard ID filter element range (0x16)

SFID2 -> `00011110110` -> Second ID of standard ID filter element range (0xF6)

Double filter for RX FIFO1

Below is an example of a double ID filter to store messages identifiers 0 x 0A or 0 x FF into FIFO 1.
Register value (HEX): 0x500A00FF
Register value (BIN): 01 010 00000001010 (00000) 00011111111
Fields values:

SFT -> `01` -> Dual ID filter for SFID1 or SFID2

SFEC -> `010` -> Store in Rx FIFO 1 if filter matches

SFID1 -> `00000001010` -> First ID of standard dual ID filter element

SFID2 -> `00011111111` -> Second ID of standard dual ID filter element

Rx dedicated buffer filtering

Below is an example to store messages with identification 0 x 7F0 into dedicated rx buffer #0.
Using a dedicated buffer, it is possible to filter only one message ID and that is the one written in the SFID1 field.
Register value (HEX): 0x3FF00000
Register value (BIN): 00 111 11111110000 (00000) 00 (000) 000000

SFT -> `00` -> this value isn`t important because filtering to store into dedicated RX BUFFER and in this case

SFT value is ignored (see SFEC field description case `111`)

SFEC -> `111` -> Store into dedicated rx buffer if filter matches

SFID1 -> `11111110000` -> standard ID that filter will accept (0x7F0)

SFID2[10, 9] -> `00` -> this field decides whether the received message is stored in an rx buffer or treated as

message A, B, or C of the debug message sequence. In this case, the software application wants to store the

message in an rx buffer.

SFID2[0,5] -> `000000` → index of the dedicated buffer rx where the corresponding message will be stored (if

N dedicated buffer rx has been configured, this index can be in the range [0, N -1]).In this case the message is

stored into dedicated buffer #0.

Classic filter for RX FIFO0

This example shows how to store the messages with identifier in the range [0x688, 0x68F] in the RX FIFO 0. For
a classic filter, an Identifier / Mask pair must be defined. The identifier must be written in SFID1 and the mask in
SFID2 fields of filter element. In a classic filter, the IDs messages that pass the filter are obtained by applying the
mask to the identifier as follows:

this is the meaning of the filter bits -> 1 = must match (0 = don`t care);

having a filter with a mask made up of all “1s”, only one identifier will pass to the filter (the one that is written in

the SFID1 field) while a filter having a mask made up of all “0” all identifiers will pass the filter.

Obviously, these are the simplest filters. Below is an explanation of how to organize a range filter for the standard
ID in range [0x688, 0x68F] which stores received messages in RX FIFO 0. This is a standard message filter, so
we will give values to SFID1 = Identifier and SFID2 = Mask.
Register value (HEX): 0x8E8B07F8
Register value (BIN): 10 001 11010001011 00000 11111111000

SFT -> `10` -> Classic filter: SFID1 = filter, SFID2 = mask

SFEC -> `001` -> Store in Rx FIFO 0 if filter matches

SFID1 = 110 1000 1011 (Identifier0x68B)

SFID2 = 111 1111 1000 (Mask0x7F8)

Applying the mask to the identifier (a little bit) with the meaning of the mask bit (1 = must match 0 = don`t care) we
find the following range filter where the `X` symbol stands for zero or one.

Filter = 110 1000 1XXX

Then, all standard messages in the range [0x688, 0x68F] will pass the filter.

Extended ID filters configuration

The same filters types can be implemented also for extended identifiers (29-bit identifiers).

Range extended filter for RX FIFO0

In this example, this filter will store messages with identifiers in the range [0xFFFFF, 0x1FFFFFFF] in FIFO 0.
Below the register values:

F0 register value (HEX): 0x200FFFFF

F1 register value (HEX): 0xDFFFFFFF

FO register value (BIN): 001 00000000011111111111111111111

F1 register value (BIN): 11 (0) 11111111111111111111111111111

Fields values:

EFEC -> `001` -> Store in Rx FIFO 0 if filter matches

EFID1 ->`00000000011111111111111111111` -> First ID of extended ID filter element

range(0xFFFFF)

EFT -> `11` -> Range filter from SFID1 to SFID2

SFID2 ->`11111111111111111111111111111` -> Second ID of standard ID filter element range(0x1FFFFFFF)

Double ID filter for FIFO 1

In this example the dual ID filter will store messages having identifiers 0xAAAAA or 0xBBBBB into FIFO 1.

F0 register value (HEX): 0x400AAAAA

F1 register value (HEX): 0x400BBBBB

FO register value (BIN): 010 000000000 10101010101010101010

F1 register value (BIN): 01 (0) 00000000010111011101110111011

Fields values:

EFEC -> `010` -> Store in Rx FIFO 1 if filter matches

EFID1 -> `00000000010101010101010101010` -> First extended ID (0xAAAAA)

EFT -> `01` -> Dual ID filter for EFID1 or EFID2

EFID2 -> `00000000010111011101110111011` -> Second extended ID (0x000BBBBB)

Dedicated rx buffer

In this example the filtering will store messages having identifier 0x000AAAAA into dedicated rx buffer #1. Also in
this scenario, using the dedicated buffer only one message id can be filtered and it`s the one wrote into EFID1
field.

ID Filter for dedicated rx buffer (ID = 0x000AAAAA)

F0 register value (HEX): 0xE00AAAAA

F1 register value (HEX): 0x00000001

FO register value (BIN): 111 00000000010101010101010101010

F1 register value (BIN): 00 (0) 000000000000000000 00 (000) 000001

Fields values:

EFEC -> `111` -> Store into dedicated rx buffer if filter matches

EFID1 -> `00000000010101010101010101010` -> extended ID that filter will accept

(0x000AAAAA)

EFT -> `00` -> this value isn`t important because filtering to store into dedicated RX

BUFFER and in this case EFT value is ignored (see EFEC field description case `111`)

EFID2[10, 9] -> `00` -> this field decides whether the received message is stored into an Rx Buffer or treated

as message A, B, or C of the debug message sequence. In this case software application wants to store

message into an Rx Buffer

EFID2[0,5] -> `000001` -> index of the dedicated rx buffer where the matching message will be stored (if you

configured N dedicated rx buffer this index can be in the range [0, N -1]). In this case the message is stored

into dedicated buffer #1

Classic filter for rx FIFO1

In this example, the filter programming will store messages store with identifier in the range [0 x FFFFF, 0
x1FFFFFF] into the rx FIFO 1. It is underatood that the masking method is the same as the standard ID filters.
Below is an explanation on how to program an extended ID range filter in rage [0 x FFFFF, 0 x 1FFFFFF] which
stores received messages in rx FIFO 1. This is a filter for extended messages, so we will give values to EFID1 =
Identifier and EFID2 = Mask

F0 register value (HEX): 0x400FFFFF

F1 register value (HEX): 0x9E0FFFFF

F0 register value (BIN): 010 00000000011111111111111111111

F1 register value (BIN): 10 (0) 11110000011111111111111111111

EFT > `10` -> Classic filter: EFID1 = filter, EFID2 = mask

EFEC -> `010` -> Store in Rx FIFO 1 if filter matches

EFID1 = 0 0000 0000 1111 1111 1111 1111 1111 (Identifier 0xFFFFF)

EFID2 = 1 1110 0000 1111 1111 1111 1111 1111 (Mask 0x1E0FFFFF)

Applying the mask to the identifier (a bit) with the meaning of the mask bit (1 = must correspond to 0 = don`t care)
we find the following range filter where the symbol `X` stands for zero or one.

Filter = 0 000X XXXX 1111 1111 1111 1111 1111

So, all extended messages in the range [0xFFFFF, 0x1FFFFFF] will pass the filter.

Appendix A Reference documents

SPC584Cx/SPC58ECx Reference manual

SPC584Cx/SPC58ECx datasheet

Appendix B Acronyms and abbreviations

Abbreviation Complete name

CAN Controller area network

FD Flexible data rate

Document revision history

Date Version Changes

01-Mar-2021 1 Initial release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers
should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant
to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability
for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty
granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to
www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this
document.

© 2021 STMicroelectronics – All rights reserved

Documents / Resources

ST TN1348 SPC58x Configuring CAN and CAN-FD Filters [pdf] Instructions
TN1348, SPC58x Configuring CAN and CAN-FD Filters

Manuals+,

http://www.st.com/trademarks
https://manuals.plus/m/b19a2026ef5c89fb58fc61becfbb92228d3fe6b8679663460a6bd78f1071c684
https://manuals.plus/m/b19a2026ef5c89fb58fc61becfbb92228d3fe6b8679663460a6bd78f1071c684_optim.pdf
https://manuals.plus/

	TN1348 SPC58x Configuring CAN and CAN-FD Filters
	TN1348 SPC58x Configuring CAN and CAN-FD Filters
	Introduction
	CAN overview
	Filtering introduction
	Message RAM initialization
	Example of standard ID filters
	Range filter for RX FIFO0
	Double filter for RX FIFO1
	Rx dedicated buffer filtering
	Classic filter for RX FIFO0

	Extended ID filters configuration
	Range extended filter for RX FIFO0
	Double ID filter for FIFO 1
	Dedicated rx buffer
	Classic filter for rx FIFO1

	Appendix A Reference documents
	Appendix B Acronyms and abbreviations
	Document revision history

	IMPORTANT NOTICE – PLEASE READ CAREFULLY
	Documents / Resources

