STEVAL-AETKT2V1 Evaluation Kit for High Precision Bidirectional Current Sense Amplifiers User Manual Home » ST » STEVAL-AETKT2V1 Evaluation Kit for High Precision Bidirectional Current Sense Amplifiers User Manual 🖫 #### **Contents** - 1 STEVAL-AETKT2V1 Evaluation Kit UM2859 User Manual - 1.1 Introduction - 1.2 Getting started - 1.2.1 Overview - 1.2.2 Shunt resistance - 1.2.3 Connection - 1.2.4 Voltage reference settings - 1.3 Schematic diagrams - 1.4 Bill of materials - 1.5 Revision history - 2 Documents / Resources - **3 Related Posts** ## STEVAL-AETKT2V1 Evaluation Kit UM2859 User Manual Getting started with the STEVAL-AETKT2V1 evaluation kit for high precision bidirectional current sense amplifiers #### Introduction The STEVAL-AETKT2V1 evaluation kit implements bidirectional current sense amplifiers by placing a sense resistor either in the high side or in the low side. The STEVAL-AETKT2V1 kit consists of a mother board and two different daughter boards for different gain configurations. TSC21x family implements zero drift technology and is specially designed to accurately measure current by amplifying the voltage across a shunt resistor connected to its input. The voltage drop (V_{sense}) is then amplified by an amplifier. Thanks to the use of thin film resistors, TSC21x offers an extremely precise gain and very high CMRR performance. Moreover, thanks to the possibility of fixing the output common mode voltage through a reference pin, the TSC21x can be either used as unidirectional or bidirectional current sensing amplifier. Figure 1. STEVAL-AETKT2V1 evaluation kit ## **Getting started** #### Overview Input common mode voltage: 26 V • Offset voltage: ±35 μV (±100 μV) max. Offset drift: 0.1 μV/°C max. • Gain drift: 20 ppm/°C max. • 2.7 to 26 V supply voltage Quiescent current: 100 μA max. • SC70-6 and QFN10 (1.8 x 1.4 mm) package • Temperature range: -40 to 125°C - Gain configuration from 50 V/V to 1000 V/V - · RoHS compliant #### **Shunt resistance** The STEVAL-AETKT2V1 offers the possibility of soldering a shunt resistance directly on the PCB. The board can host standard 2512 package size shunts on 4 W footprint optimized for minimal reading error. You can choose the appropriate shunt package and value for your own application. If the chosen shunt is not compatible with the footprint, it has be connected outside the evaluation kit. The selection of the shunt resistor is a tradeoff between dynamic range and power dissipation. Generally, in high current sensing applications, the focus is to reduce as much as possible the power dissipation (I²R) by choosing a shunt with the smallest value. The recommended shunt value is obtained from the following equation: $$R_{sense} = \left(\frac{V_{outMax} - V_{ol}}{Gain \cdot \left(1 + Error_{gain}\right)} - 2 \cdot \left|V_{lo}\right|\right) \cdot \frac{1}{I_{range}}$$ Where V_{outMax} is the maximum output voltage usually equal to the device V $_{cc}$ or the ADC connected to the output, V_{ol} is the output low swing value for the TSC21x family (in this case, it is 30 mV), Gain is the gain of the selected device (for example, TSC213 has a gain of 50), ERROR_{gain} equals to 1%, V_{io} represents the input offset voltage (100 μ V can be considered for TSC213), I_{range} is the actual range to be measured. Note: It is recommended to take a bit smaller shunt value to have some margin and prevent saturation. The actual current range is calculated by the following equations: $$I_{\text{max}Positive} = \frac{V_{outMax} - V_{ref}}{R_{Shunt} \cdot Gain}$$ $$I_{\text{max}Negative} = \frac{V_{ref} - V_{outMin}}{R_{Shunt} \cdot Gain}$$ Table 1. Examples of current ranges with 3mOhm shunt over different gain, V_{CC} and V_{ref} values | Device | V _{CC} (V) | V _{ref} (V) | Range I _{positive} (A) | Range I _{Negative} (A) | |--------|---------------------|----------------------|---------------------------------|---------------------------------| | TSC213 | 3.3 | 2.5 | 4.66 | -16 | | 130213 | 5 | 2.5 | 16 | -16 | | TSC210 | 3.3 | 2.5 | 1.16 | -4 | | 130210 | 5 | 2.5 | 4 | -4 | ### Connection The STEVAL-AETKT2V1 evaluation kit can be connected to the application design via J1 header Table 2. J1 pin-out description | J1 pin | Description | | | | | | |--------|--|--|--|--|--|--| | REF | Output or input voltage reference (see Section 1.4 Voltage reference settings) | | | | | | | VCC | Supply voltage | | | | | | | GND | Ground | | | | | | | OUT | TSC21x analog output value | | | | | | #### Voltage reference settings As the TSC21x family devices can measure current in both directions, some voltage reference has to be provided. Voltage reference can be generated directly on the STEVAL-AETKT2V1 evaluation kit by a precision op-amp or by shunt voltage reference. Another option is to use an external reference voltage source. Refer to the following table for proper jumper settings. Important: Only one jumper at a time can be placed on the kit. Table 3. Voltage reference J2A and J2B jumper settings | J2A | J2B | Functionality | |--------------|------------|--| | NA | GND | Unidirectional | | NA | VCC | Unidirectional Inverted | | REF1 | NA | V _{ref} generated by op-amp TSB711 (default Vcc/2) ⁽¹⁾ | | REF2 | NA | V _{ref} generated by shunt reference TS431 (default 1.24V) ⁽¹⁾ | | REF1 or REF2 | GND or VCC | Not allowed ⁽²⁾ | | NA | NA | External voltage reference provided from J1 | - 1. The reference voltage value can be adjusted by resistor values. - 2. IC components might be damaged # **Schematic diagrams** Figure 2. STEVAL-AETKT2V1 main board (STEVAL-AET011V1B) circuit schematic The STEVAL-AET011V1B board is not available for separate sale Figure 3. STEVAL-AETKT2V1 daughter board (STEVAL-AET012V1B) circuit schematic The STEVAL-AET012V1B board is not available for separate sale R5 100k GND Figure 4. STEVAL-AETKT2V1 daughter board (STEVAL-AET013V1B) circuit schematic The STEVAL-AET013V1B board is not available for separate sale # **Bill of materials** Table 4. STEVAL-AETKT2V1 bill of materials | Item | Q.ty | Ref. | Part/Value | Description | Manufacturer | Order code | |------|------|-------------------------------|------------|----------------|--------------|---------------------------------| | 1 | 1 | Table 5. STEVAL-
AET011V1B | | Main board | ST | Not available for separate sale | | 2 | 1 | Table 6. STEVAL-
AET012V1B | | Daughter board | ST | Not available for separate sale | | 3 | 1 | Table 7. STEVAL-
AET013V1B | | Daughter board | ST | Not available for separate sale | Table 5. STEVAL-AET011V1B bill of materials The STEVAL-AET011V1B board is supplied with the kit and is not available for separate sale | Item | Q.ty | Ref. | Part/Value | Description | Manufacturer | Order code | |------|------|--------|--|------------------------|-----------------------------|-------------------| | 1 | 1 | P1 | 1x2, 5.08mm | Terminal Block for PCB | CUI devices | TB009-508-02BE | | 2 | 6 | U2 | DIP6, - 6x
6-5330808-5 TE
DIP 6 | Mini spring socket | TE
Connectivity /
AMP | 6-5330808-5 | | 3 | 2 | R1, R2 | 0 R, 0603 | Resistors | Vishay/Dale | CRCW06030000Z0EAC | | 4 | 1 | R7 | 0R, 0805 | Resistor | Vishay/Dale | CRCW08050000Z0EAC | | 5 | 2 | R4, R5 | 100 k, 0805,
100 V, ±1% | Resistors | Vishay/Dale | CRCW0805100KFKEA | | 6 | 1 | C2 | 100 nF, 0805,
50 V, ±10%,
X7R | Capacitor | KEMET | C0805C104K5RACTU | | 7 | 1 | C7 | 100pF, 0805,
50V, ±10%,
C0G/NP0 | Capacitor | KEMET | C0805C101K5GACTU | | 8 | 1 | R3 | 1 k, 0805, 100
V, 100 mW,
±1%, ±100
ppm/K | Resistor | Vishay/Dale | CRCW08051K00FKEA | | 9 | 1 | C3 | 1 nF, 0805, 50
V, ±10%,
C0G/NP0 | Capacitor | KEMET | C0805C102K5GACTU | | 10 | 1 | C1 | 1 μF, 0805, 50
V, ±10%, X7R | Capacitor | KEMET | C0805C105K5RACTU | | 11 | 1 | R6 | 2 k, 0805, 100
V, ±1%, 100
mW, ±100
ppm/K | Resistor | Vishay/Dale | CRCW08052K00FKEA | |----|---|----|--|--|-------------|--------------------| | 12 | 1 | Rs | 3m, 2512 Shunt
4 W improved | Power metal
strip resistors,
surface mount,
4-terminal (not
assembled) | Bourns | CSS2H-2512K-3L00FE | | 13 | 1 | D2 | BAT54S,
SOT-23 | 40 V, 300 mA
general purpose
signal Schottky
diode | ST | BAT54SFILM | | Item | Q.ty | Ref. | Part/Value | Description | Manufacturer | Order code | |------|------|------------|---|--|------------------|-------------| | 14 | 2 | J2A, J2B | Header 3,
HDR1X3 , step
2.54 mm | Connector M/ -
1 row | Wurth Elektronik | 61300311121 | | 15 | 1 | J1 | Header 4,
HDR1X4, step
2.54 mm | Connector M/ -
1 row | Wurth Elektronik | 61300411121 | | 16 | 1 | R8 | NC, 0805, ±1%,
75 V, 100 mW,
±100 ppm/K | Resistor (not assembled) | Any | | | 17 | 3 | C4, C5, C6 | NC, 0603, 50 V,
±10% | Ceramic capacitor (not assembled) | Any | | | 18 | 3 | D1, D3, D4 | SMA4F18A,
SMA Flat | 400 W TVS in
SMA Flat | ST | SMA4F18A | | 19 | 1 | D5 | TS431,
SOT-23-5, ±5% | Adjustable shunt voltage reference IC | ST | TS431BILT | | 20 | 1 | U3 | TSB711,
SOT-23-5 | Precision, 6
MHz, RR IO, 36
V BiCMOS
operational
amplifier | ST | TSB711ILT | | 21 | 1 | U1 | TSC21x,
SC70-6 | High/low-side,
bidirectional,
zero-drift current
sense amplifier
(not assembled) | ST | TSC21x | #### Table 6. STEVAL-AET012V1B bill of materials The STEVAL-AET012V1B board is supplied with the kit and is not available for separate sale | Item | Q.ty | Ref. | Part/Value | Description | Manufacturer | Order code | |------|------|------|--|---|--------------|------------------| | 1 | 1 | C1 | 22 n, 0603, 50
V,±10%, X7R | Capacitor (not mounted) | KEMET | C0603C223K5RACTU | | 2 | 2 | U2 | DIP6 - 2x
TS-103-T-A,
1x3, 2.54 mm | Precision
header | Samtec | TS-103-T-A | | 3 | 1 | U1 | TSC213,
SC70-6 | High/low-side,
bidirectional,
zero-drift current
sense amplifier | ST | TSC213ICT | #### Table 7. STEVAL-AET013V1B bill of materials The STEVAL-AET013V1B board is supplied with the kit and is not available for separate sale | Item | Q.ty | Ref. | Part/Value | Description | Manufacturer | Order code | |------|------|------|--|---|--------------|------------------| | 1 | 1 | C1 | 22 n, 0603, 50
V,±10%, X7R | Capacitor (not assembled) | KEMET | C0603C223K5RACTU | | 2 | 2 | U2 | DIP6 - 2x
TS-103-T-A,
1x3, 2.54 mm | Precision
header | Samtec | TS-103-T-A | | 3 | 1 | U1 | TSC210,
SC70-6 | High/low-side,
bidirectional,
zero-drift current
sense amplifier | ST | TSC210ICT | # **Revision history** Table 8. Document revision history | Date | Revision | Changes | |-------------|----------|------------------| | 08-Jun-2021 | 1 | Initial release. | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. # **Documents / Resources** ST STEVAL-AETKT2V1 Evaluation Kit for High Precision Bidirectional Current Sense Am plifiers [pdf] User Manual STEVAL-AETKT2V1, Evaluation Kit for High Precision Bidirectional Current Sense Amplifiers Manuals+,