
Home » ST » ST FP-LIT-BLEMESH1 Software Architecture User Manual

Contents [hide

1 ST FP-LIT-BLEMESH1 Software Architecture
2 Introduction
3 Acronyms and abbreviations
4 FP-LIT-BLEMESH1 software expansion for
STM32Cube
5 Folder structure
6 Initialization and main application loop
7 System setup guide
8 Appendix A References
9 Revision history
10 Documents / Resources

10.1 References
11 Related Posts

ST FP-LIT-BLEMESH1 Software Architecture

ST FP-LIT-BLEMESH1 Software Architecture User Manual

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/_st

Introduction

FP-LIT-BLEMESH1 is an STM32Cube function pack, which lets you connect Bluetooth® Low Energy nodes to a
smartphone via Bluetooth® Low Energy, through a suitable Android™ or iOS™ application, to set the HSL values
and send the data to the lighting hardware using the Bluetooth® Low Energy mesh lighting model. The software
lets you easily create your own application for extending Bluetooth® mesh networks (by offering a ready-to-use
mesh core library), a complete set of compatible APIs, and a lighting demo application running on either X-
NUCLEO-IDB05A2 or X-NUCLEO-BNRG2A1 and X-NUCLEO-LED12A1 expansion boards connected to a
NUCLEO-L476RG development board. The software runs on the STM32 microcontroller and includes all the
necessary drivers to recognize the devices on the STM32 Nucleo development board and the expansion boards.

RELATED LINKS
Visit the STM32Cube ecosystem web page on www.st.com for further information

Acronyms and abbreviations

Acronym Description

GATT Generic attribute profile

BSP Board support package

HAL Hardware abstraction layer

SPI Serial peripheral interface

CMSIS Cortex® microcontroller software interface standard

HSL Hue saturation lighting

Table 1. List of acronyms

http://www.st.com

FP-LIT-BLEMESH1 software expansion for STM32Cube

Overview

The FP-LIT-BLEMESH1 software package expands STM32Cube functionality. The key features of the package
are:

Complete software to build a mesh network with Bluetooth® Low Energy nodes supporting the Bluetooth®

mesh lighting model, defined in Bluetooth® mesh specification V1.0.1

Hue, saturation, and lightness (HSL) values set by the STBLEMesh Android and iOS app using the lighting

model changes the RGB values of the X-NUCLEO-LED12A1 LED expansion board connected to a NUCLEO-

L476RG

Compatible with BLE-enabled smartphones to monitor and control multiple Bluetooth® Low Energy nodes,

using the proxy protocol and legacy Bluetooth® Low Energy GATT connectivity

Two-layer security, thanks to the 128-bit AES CCM encryption and 256-bit ECDH protocol, ensuring protection

from multiple attacks, including Replay, Bit-Flipping, Eavesdropping, Man-in-the-Middle, and Trashcan

Sample implementation available on:

the X-NUCLEO-IDB05A2 and X-NUCLEO-LED12A1 expansion boards connected to a NUCLEO-

L476RG development board

the X-NUCLEO-BNRG2A1 and X-NUCLEO-LED12A1 expansion boards connected to a NUCLEO-

L476RG development board

Easy portability across different MCU families, thanks to STM32Cube

 Free, user-friendly license terms

The function pack software includes the LED1202, which is a 12-channel low quiescent current LED driver, when
the X-NUCLEO-LED12A1 expansion board is mounted on top of the STM32 Nucleo.
The package is compatible with the STBLEMesh Android/iOS application available at GooglePlay/iTunes stores,
which can be used to set information and send it via Bluetooth® Low Energy. It integrates BlueNRG products with
the embedded Bluetooth® Low Energy communication in a powerful, range-extending mesh network with real full-
duplex communication. The package flexibility allows you to build your own application.

Architecture
The software is based on the STM32CubeHAL, the hardware abstraction layer for the STM32 microcontroller. The
package extends STM32Cube by providing a board support package (BSP) to enable development of
applications using Bluetooth mesh profile and model specifications.

The software layers used by the application software to access and use the expansion boards are:

the STM32Cube HAL layer, which provides a simple, generic, multi-instance set of application programming

interfaces (APIs) to interact with the upper application, library, and stack layers. It has generic and extension

APIs and is directly built around a generic architecture and allows successive layers like the middleware layer

to implement functions without requiring specific hardware configurations for a given microcontroller unit

(MCU). This structure improves the library code reusability and guarantees an easy portability on other devices.

the board support package (BSP) layer supports all the peripherals on the STM32 Nucleo except the MCU.

This limited set of APIs provides a programming interface for certain board-specific peripherals like the LED,

the user button, etc. This interface also helps in identifying the specific board version.

Figure 1. FP-LIT-BLEMESH1 software architecture

Folder structure

Figure 2. FP-LIT-BLEMESH1 package folder structure

The following folders are included in the software package:

Documentation: contains a compiled HTML file generated from the source code, which details the software

components and APIs.

Drivers: contains the HAL drivers and the board-specific drivers for each supported board or hardware platform,

including the on-board components and the CMSIS vendor-independent hardware abstraction layer for the

Arm® Cortex®-M processor series.

Middlewares: contains libraries and protocols related to the Bluetooth and Bluetooth mesh profile and model

specifications.

Projects: contains a sample application used to update the RGB lights HSL value, provided for the NUCLEO-

L476RG platform with three development environments, IAR Embedded Workbench for Arm (IAR-EWARM),

RealView Microcontroller Development Kit (MDK-ARM-STM32), and STM32CubeIDE.

Utilities: contains the STM32L4_MAC folder that provides an external MAC address.

APIs
Detailed technical information with full user API function and parameter description are in a compiled HTML file in
the “Documentation” folder.

Sample application description Initialization of application callbacks The “Projects” directory provides an example
application using the X-NUCLEO-IDB05A2 or X-NUCLEO-BNRG2A1 and X-NUCLEO-LED12A1 expansion
boards with the NUCLEO-L476RG development board.
Ready to be built projects are available for multiple IDEs.
This application starts by initializing the callbacks required for the different events and functionalities. The
callbacks are used in the BlueNRG-Mesh library to call the functions based on specific events or by the mesh
library state machine.

The Model_SIG_cb structure is used to initialize the SIG models for the application implementation. The
BluenrgMesh_SetSIGModelsCbMap(Model_SIG_cb, MODEL_SIG_COUNT); function is used to initialize the
different callbacks in the library.

Initialization and main application loop

This procedure develops an application for mesh over Bluetooth® Low Energy on the BlueNRG platforms.

Step 1. Call the InitDevice() API, which calls the SystemInit() API, to initialize the device vector table, interrupt
priorities, and clock.
Step 2. Call the Appli_CheckBdMacAddr() API to check the validity of the MAC address. If the MAC address is not
valid, the firmware is stuck in the while(1) loop and the LED continuously blinks.

Step 3. Initialize the hardware callback functions for the Bluetooth® Low Energy hardware by updating
MOBLE_USER_BLE_CB_MAP user_ble_cb =.

Step 4. To rely on an application interface for the Bluetooth® Low Energy radio initialization and Tx power
configuration, initialize the GATT connection and disconnection callbacks for the application interface.
Step 5. Call BluenrgMesh_BleHardwareInitCallBack(&user_ble_cb) to complete the initialization of hardware
callbacks.
Step 6. Initialize the BlueNRG-Mesh library by calling BluenrgMesh_Init(&BLEMeshlib_Init_params). If an error
occurs, a message (“Could not initialize BlueNRG-Mesh library!”) pops up on the terminal window, which was
opened for the VCOM port created by the board USB connection. This error makes the LED blink continuously.
Step 7. Check whether the device has been provisioned or not. A provisioned device has network keys and other
parameters configured in the internal flash memory. You can check them with the BluenrgMesh_IsUnprovisioned()
API. If the node is unprovisioned, the BluenrgMesh_InitUnprovisionedNode() API initializes it. If the device is
already provisioned, the BluenrgMesh_InitprovisionedNode() API helps to initialize the device.
Step 8. Print the messages to the terminal window for the nodes that are being initialized. The message also
prints the MAC address assigned to the node.
Step 9. Initialize the BlueNRG-Mesh models using the BluenrgMesh_ModelsInit() API.
Step 10. To initialize the node to the unprovisioned state, hold down the user button. It erases all the network
parameters configured in the device internal memory. Once the unprovisioning is complete, reset the board.
Step 11. Initialize the LED drivers and the GPIO mounted on the X-NUCLEO-LED12A1. The application must call
BluenrgMesh_Process() in while(1) loop as frequently as possible. This function calls BLE_StackTick() internally
to process Bluetooth® Low Energy communication. The BluenrgMesh_ModelsProcess() (model processing) and
Appli_Process() APIs are also called in while(1) loop. Any application implementation is performed in the state
machine by nonblocking functions with frequent calls to BluenrgMesh_Process().
Step 12. Check for user inputs or buttons for any action to take.

GATT connection/disconnection node
Each node in the network can connect to a smartphone through the GATT interface. When this connection is
established, the node becomes a proxy, which acts as a bridge between the mesh network commands and the
smartphone responses.
You can detect the smartphone connection and disconnection through the following callbacks:

Appli_BleGattConnectionCompleteCb;

Appli_BleGattDisconnectionCompleteCb;

These are initialized during the main loop.
During the provisioning, the GATT connection is established with the node that needs to be provisioned.
If the smartphone moves out of the proxy node range, it establishes a new connection with the available node.

Lighting model

The specification defines the number of light states, messages, and models that are explicitly defined to be

nonspecific in their functionality.

There are different types of light sources with different capabilities. Accordingly, there are different ways to

express the state of a light.

A more advanced method of controlling a light is changing the lightness by controlling the light lightness actual

state.

If a light is a tunable white, it is possible to control its color temperature through the light CTL.

If a light is a color-changing light, it is possible to control the three dimensions (hue, saturation, and lightness)

by controlling each state independently.

Figure 3. Lighting model message flow

The number of octets depends on the parameters dedicated for the model. They are different for each lighting
model.
The middle layer receives messages from the library. It then checks for the opcode according to the different
application of the light model. As an example of the light lightness model, the opcode is checked in the middle
layer. The message with the defined data parameters is then transmitted to the light lightness application.

The types of messages are:

Set Acknowledged message, sent by the client to set the desired value to the model on the server. It expects

then the response message from the server.

Set Unacknowledged message, sent by the client to set the desired value to the model on the server. It does

not expect any response message from the server.

 Get message, sent by the client to the server to get the state of the model as a response message from the

server.

External MAC address utilities

The “Utilities” folder contains the STM32L4_MAC folder, which provides a hex file of an external MAC address.

To use this address, uncomment the EXTERNAL_MAC_ADDR_MGMT macro in the mesh_cfg.h file of the

“Middleware” folder.

The demo application firmware and the MAC address are flashed independently. Thus, you do not have to

update the firmware if the other firmware has already been flashed.

The MAC address is flashed the first time and at every full chip erase.

System setup guide

Hardware description

STM32 Nucleo

STM32 Nucleo development boards provide an affordable and flexible way for users to test solutions and build

prototypes with any STM32 microcontroller line.

The Arduino connectivity support and ST morpho connectors make it easy to expand the functionality of the

STM32 Nucleo open development platform with a wide range of specialized

expansion boards to choose from.

The STM32 Nucleo board does not require separate probes as it integrates the ST-LINK/V2-1

debugger/programmer.

The STM32 Nucleo board comes with the comprehensive STM32 software HAL library together with various

packaged software examples for different IDEs (IAR EWARM, Keil MDK-ARM,

STM32CubeIDE, mbed and GCC/LLVM).

All STM32 Nucleo users have free access to the mbed online resources (compiler, C/C++ SDK and developer

community) at www.mbed.org to easily build complete applications.

Figure 4. STM32 Nucleo board

X-NUCLEO-IDB05A2 expansion board

The X-NUCLEO-IDB05A2 Bluetooth® Low Energy expansion board is based on the BlueNRG-M0 Bluetooth®

Low Energy network processor module.

The BlueNRG-M0 is Bluetooth v4.2 compliant, FCC, and IC certified (FCC ID: S9NBNRGM0AL; IC: 8976C-

BNRGM0AL). It supports simultaneous master/slave roles and can behave as a

Bluetooth® Low Energy sensor and hub device at the same time.

The BlueNRG-M0 provides a complete RF platform in a tiny form factor, with integrated radio, antenna, high

frequency, and LPO oscillators.

The X-NUCLEO-IDB05A2 is compatible with the ST morpho (not mounted) and Arduino UNO R3 connector

layout.

The X-NUCLEO-IDB05A2 interfaces with the STM32 microcontroller via the SPI pin and allows changing the

default SPI clock, SPI chip select, and SPI IRQ by replacing a resistor on the expansion board.

X-NUCLEO-BNRG2A1 expansion board

The X-NUCLEO-BNRG2A1 expansion board provides Bluetooth® Low Energy connectivity for developer

applications and can be plugged onto an STM32 Nucleo development board (for

example, NUCLEO-L476RG with an ultra-low power STM32 microcontroller) through its Arduino UNO R3

connectors.

The expansion board features the Bluetooth® v5.2 compliant and FCC certified BlueNRG-M2SP application

processor module based on the ST BlueNRG-2 System-on-Chip. This SoC manages

the complete Bluetooth® Low Energy stack and protocols on its Cortex-M0 core and programmable flash

memory, which can accommodate custom applications developed using the SDK. The

BlueNRG-M2SP module supports master and slave modes, increased transfer rates with data length extension

(DLE), and AES-128 security encryption.

The X-NUCLEO-BNRG2A1 interfaces with the STM32 Nucleo microcontroller via SPI connections and GPIO

pins, some of which can be configured through the hardware.

Figure 6. X-NUCLEO-BNRG2A1 expansion board

X-NUCLEO-LED12A1 expansion board

The X-NUCLEO-LED12A1 LED driver expansion board for STM32 Nucleo features four LED1202 devices that

can drive up to 48 LEDs.

The LED1202 is a 12-channel low quiescent current LED driver, which guarantees a 5 V output driving

capability. Each channel is able to provide up to 20 mA with a headroom voltage of 350 mV

(typical) only.

The output current can be adjusted separately for each channel through an 8-bit analog and 12-bit digital

dimming control.

The X-NUCLEO-LED12A1 expansion board comes with an additional LED panel board that houses two LEDs

matrices: a 6×8 white LED matrix and a 4×4 RGB matrix.

LED matrices can be supplied via an external power supply, which is connected to the J13 connector, and by

selecting the right path through the J15 jumper to reach the maximum luminosity

available.

Figure 7. X-NUCLEO-LED12A1 expansion board

Hardware setup
To set up a suitable development environment for creating applications for the STM32 Nucleo equipped with the
lighting or Bluetooth® Low Energy expansion board, you need the following hardware components:

1. One STM32 Nucleo development board (order code: NUCLEO-L476RG)

2. One Bluetooth® Low Energy expansion board (order code: X-NUCLEO-IDB05A2 or X-NUCLEO-BNRG2A1)

3. One LED expansion board (order code: X-NUCLEO-LED12A1)

4. One USB type A to Mini-B USB cable to connect the STM32 Nucleo to the PC

Software setup
The following software components are required for the setup of a suitable development environment to create
applications for the STM32 Nucleo board with the Bluetooth® Low Energy and the LED expansion board:

FP-LIT-BLEMESH1: an STM32Cube function pack for IoT node with Bluetooth® Low Energy mesh connectivity

and lighting model. The firmware and related documentation are available on www.st.com.

Development tool-chain and compilers. The STM32Cube expansion software supports the three following

environments to select from:

 IAR Embedded Workbench for Arm® (IAR-EWARM) toolchain + ST-LINK

RealView Microcontroller Development Kit (MDK-ARM-STM32) toolchain + ST-LINK

STM32CubeIDE +ST-LINK

System setup
The STM32 Nucleo board integrates the ST-LINK/V2-1 debugger/programmer.
The developer can download the ST-LINK/V2-1 USB driver by looking for the STSW-LINK009 software on
www.st.com.
You can easily connect the X-NUCLEO-LED12A1 LED expansion board to the STM32 Nucleo through the
Arduino UNO R3 extension connector.

The X-NUCLEO-LED12A1 can interface with the external STM32 microcontroller on the STM32 Nucleo using the
I²C communication protocol.
You can also connect either the X-NUCLEO-IDB05A2 or the X-NUCLEO-BNRG2A1 expansion board to the
STM32 Nucleo through the Arduino UNO R3 extension connector.

Appendix A References

1. Mesh over Bluetooth® Low Energy: STSW-BNRG-Mesh

2. Bluetooth mesh networking specifications: https://www.bluetooth.com/specifications/mesh-specifications

3. Bluetooth mesh model specification: https://www.bluetooth.com/specifications/adopted-specifications

Revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections,

enhancements, modifications, and improvements to ST products and/or to this document at any

time without notice. Purchasers should obtain the latest relevant information on ST products before placing

orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at

the time of order acknowledgment.

https://www.bluetooth.com/specifications/mesh-specifications
https://www.bluetooth.com/specifications/adopted-specifications

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability

for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty

granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to

www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of

this document.

2022 STMicroelectronics – All rights reserved

Documents / Resources

ST FP-LIT-BLEMESH1 Software Architecture [pdf] User Manual
UM2992, FP-LIT-BLEMESH1 Software Architecture, FP-LIT-BLEMESH1, Software Architecture,
FP-LIT-BLEMESH1 STM32Cube Function Pack

References

 Free open source IoT OS and development tools from Arm | Mbed

 STMicroelectronics: Our technology starts with you

 STMicroelectronics Trademark List - STMicroelectronics

 Specifications | Bluetooth® Technology Website

 Specifications – Bluetooth® Technology Website

 Asset 1

 Asset 1

 Asset 1

 Asset 1

 Asset 1

 Asset 1

 ST-LINK/V2 - ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32 - STMicroelectronics

 Asset 1

 Asset 1

 ST SOFTWARE LICENSE

 DEFINITIONS

 Asset 1

 Asset 1

 Asset 1

 STM32Cube - Discover the STM32Cube Ecosystem - STMicroelectronics

 STM32CubeIDE - Integrated Development Environment for STM32 - STMicroelectronics

 STM32 Nucleo Boards - STMicroelectronics

https://manuals.plus/m/bba666642064ff77341452c8b1b7933ba2676337bbf0dba17b874da0caf87862
https://manuals.plus/m/bba666642064ff77341452c8b1b7933ba2676337bbf0dba17b874da0caf87862_optim.pdf
http://www.mbed.org
http://www.st.com
http://www.st.com/trademarks
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/mesh-specifications
https://www.st.com/en/product/bluenrg-2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/BlueNRG-M0?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/BlueNRG-M2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/FP-LIT-BLEMESH1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/led1202?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/nucleo-l476rg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/st-link?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/stblemesh?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/stsw-bnrg-mesh?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/stsw-link009?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/x-nucleo-bnrg2a1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/x-nucleo-idb05a2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/en/product/x-nucleo-led12a1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2992
https://www.st.com/stm32cube
https://www.st.com/stm32cubeide
https://www.st.com/stm32nucleo

Manuals+, home privacy

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/privacy-policy

	ST FP-LIT-BLEMESH1 Software Architecture User Manual
	ST FP-LIT-BLEMESH1 Software Architecture
	Introduction
	Acronyms and abbreviations
	FP-LIT-BLEMESH1 software expansion for STM32Cube
	Folder structure
	Initialization and main application loop
	System setup guide
	Appendix A References
	Revision history
	Documents / Resources
	References

